Skip to main content
Log in

Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos. Eleven maize inbred lines were pre-screened for transformation frequency using N6 salts. A subset of three maize inbred lines was then systematically evaluated for frequency of post-infection embryogenic callus induction and transformation on four media regimes: N6 or MS salts in each of two distinct media backgrounds. Transgenic plants recovered from inbred lines B104, B114, and Ky21 were analyzed for transgene integration, expression, and transmission. Average transformation frequencies of 6.4% (for B104), 2.8% (for B114), and 8% (for Ky21) were achieved using MS salts. Availability of Agrobacterium-mediated maize inbred line transformation will improve future opportunities for maize genetic and functional genomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214

    Article  CAS  Google Scholar 

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65:92–93

    Google Scholar 

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762

    Article  Google Scholar 

  • Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA (1995) Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreds. Maydica 40:275–281

    Google Scholar 

  • Brettschneider R, Becker D, Lorz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748

    Article  CAS  Google Scholar 

  • Carvalho CHS, Bohorova N, Bordallo P, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73–76

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45

    Article  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sin 18:659–668

    Google Scholar 

  • Close KR, Ludeman LA (1987) The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci 52:81–89

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy R, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Deblaere R, Bytebier B, DeGreve H, Deboeck F, Schell J, van Montagu, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors fro Agrobacterium-mediate gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332

    Article  CAS  Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction of embryogenic callus of sorghum. Plant Cell Tissue Organ Cult 61:115–123

    Article  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Y, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. PNAS 99(18):11975–11980

    Article  PubMed  CAS  Google Scholar 

  • Hallauer R, Lamkey KR, White PR (1997) Registration of five inbred lines of maize: B102, B104, B104, B105, and B106. Crop Sci 37:1405–1406

    Article  Google Scholar 

  • Hallauer R, Lamkey KR, White PR (2000) Registration of B110, B111, B113 and B114 inbred lines of maize. Crop Sci 40:1518–1519

    Google Scholar 

  • Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Nat. Biotechnol. 4:219–223

    Article  Google Scholar 

  • Hoekema A (1983) A plant binary vector strategy based on separation of vir and T region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Huang X, Wei Z (2005) Successful Agrobacterium-Mediated Genetic Transformation of Maize Elite Inbred lines. Plant Cell Tissue Organ Cult 83:187–200

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea Mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20(1):57–66

    CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants. The gus gene fusion system. Plant Mol Biol Rep 5:287–405

    Article  Google Scholar 

  • Linsmaier E, Skoog F (1965) Organic growth factor requirements of tobacco tissue culture. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lowe BA, Way MM, Kumpf JM, Rout JR, Johnson R, Warner D, Armstrong TM, Chomet PS (2004) Development of a transformation competent elite maize line by marker assisted breeding. In: Abstract P-2030, 2004 World Congress on in vitro biology, 50

  • Lu C, Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 66:285–289

    Article  Google Scholar 

  • Lupotto E, Conti E, Reali A, Lanzanova C, Baldoni E, Allegri L (2004) Improving in vitro culture and regeneration conditions for Agrobacterium-mediated maize transformation. Maydica 49:21–29

    Google Scholar 

  • McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149(1):16–20

    Article  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47:23–48

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. PNAS 102(33):11940–11944

    Article  PubMed  CAS  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYork

    Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Snedecor G, Cochran W (1980) Statistical methods. Iowa State University Press, Iowa

  • Songstad DD, Armstrong CL, Petersen WL (1991) AgNO3 increased Type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9:699–702

    Article  CAS  Google Scholar 

  • Songstad DD, Armstrong CL, Petersen WL, Hairston B, Hinchee MAW (1996) Production of transgenic maize plants and progeny by bombardment of Hi II immature embryos. In Vitro Cell Dev Biol-Plant 32:179–183

    Article  Google Scholar 

  • Tomes DT, Smith OS (1985) The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor Appl Genet 70:505–509

    Article  Google Scholar 

  • Vain P, Yean H, Flament P (1989) Enhancement of production and regeneration of embryogenic Type II callus in Zea mays L. by AgNO3. Plant Cell Tissue Organ Cult 18:143–151

    Article  Google Scholar 

  • Wan Y, Widholm JM, Lemaux PG (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14

    Article  CAS  Google Scholar 

  • Wang K, Frame B, Marcell L (2003) Genetic transformation of maize. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 2. Improvement of food crops. Sci Tech Publishing LLC, Houston, pp 175–217

    Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T 0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72:34–37

    Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Shroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet G 107:1157–1168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our thanks to S Gelvin for providing Agrobacterium strains C58Z707 and LBA4404; K Lamkey for patient and helpful discussion in characterizing inbred lines; F Zhang for technical assistance; S Assan for help with embryo dissection; and H Lowman, K Orbin, K Corey, R Hansen, R Rossi, JC Martinez, L Marcell and A Kalvig for help in the laboratory or greenhouse. Funding for this project was provided by the National Sciences Foundation (DBI 0110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Additional information

Communicated by J. C. Register

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frame, B., McMurray, J., Fonger, T. et al. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25, 1024–1034 (2006). https://doi.org/10.1007/s00299-006-0145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0145-2

Keywords

Navigation