Skip to main content
Log in

Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits.

Abstract

The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Abied M, Szwerdszarf D, Mordehaev I, Levy A, Stelmakh OR, Belausov E, Yaniv Y, Uliel S, Katzenellenbogen M, Riov J, Ophir R, Sadot E (2012) Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. Plant J 71:787–799

    Article  CAS  PubMed  Google Scholar 

  • Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H et al (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625

    Article  CAS  PubMed  Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399

    Article  Google Scholar 

  • Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Arnholdt-Schmitt B, Santos Macedo E, Peixe A, Cardoso HCG, Cordeiro AM (2006a) AOX—a potential functional marker for efficient rooting in olive shoot cuttings. Proc Sec Int Sem OliveBioteq, Marsala, Mazara del Vallo, Italy 1:249–254

    Google Scholar 

  • Arnholdt-Schmitt B, Costa JH, Fernandes de Melo D (2006b) AOX a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 6:281–287

    Article  Google Scholar 

  • Asif MH, Trivedi PK, Misra P, Nath P (2009) Prolyl-4-hydroxylase (AtP4H1) mediates and mimics low oxygen response in Arabidopsis thaliana. FunctIntegr Genomics 9:525–535

    CAS  Google Scholar 

  • Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena Cuperus J, Gelvin SB (2008) IMPa-4, an Arabidopsis import in α isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 10:2661–2680

    Article  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY et al (2003) A gene expression map of the Arabidopsis root. Science 5652:1956–1960

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brinker M, Van Zyl L, Liu W et al (2004) Microarray analyses of gene expression during adventitious root development in Pinuscontorta. Plant Physiol 135:1526–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavalcanti JHF, Oliveira GM, Cruz Saraiva KD et al (2013) Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. J Plant Physiol 170:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    Article  PubMed  Google Scholar 

  • Costa JH, de Melo DF, Gouveia Z, Cardoso HG, Peixe A, Arnholdt-Schmitt B (2009a) The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. Physiol Plant 137(4):553–565

    Article  CAS  PubMed  Google Scholar 

  • Costa JH, Cardoso HG, Campos MD, Zavattieri A, Frederico AM, de Melo DF, Arnholdt-Schmitt B (2009b) Daucus carota L.—an old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes. Plant Physiol Biochem 47(8):753–759

    Article  CAS  PubMed  Google Scholar 

  • Costa CT, de Almeida MR, Ruedell CM et al (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133

    Article  PubMed Central  PubMed  Google Scholar 

  • Crichton PG, Albury MS, Affourtit C, Moore AL (2010) Mutagenesis of the Sauromatum guttatum alternative oxidase reveals features important for oxygen binding and catalysis. Biochim Biophys Acta 1797:732–737

    Article  CAS  PubMed  Google Scholar 

  • De Klerk GJ (2002) Rooting of microcuttings: theory and practice. InVitro Cell Dev Biol Plant 38:415–422

    Article  Google Scholar 

  • De Klerk GJ, Hanecakova J (2008) Ethylene and rooting of mungbean cuttings. The role of auxin induced synthesis and phase- dependent effects. Plant Growth Regul 56:203–209

    Article  Google Scholar 

  • De Klerk GJ, Van der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  • Denaxa NK, Roussos PA, Vemmos SN (2013) The possible role of polyamines to the recalcitrance of “Kalamata” olive leafy cuttings to root. J Plant Growth Regul. doi:10.1007/s00344-013-9407-8

    Google Scholar 

  • Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive propagation manual. CSIRO Publ, Australia, p 130

    Google Scholar 

  • Feng H, Guan D, Sun K, Wang Y, Zhang T, Wang R (2013) Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochim Biophys Sin 45:985–994

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139:1795–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13:7327–7339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukazawa J, Tatsuya S, Sarahmi I, Isomaro Y, Yuji K, Yohsuke T (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12:901–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukazawa J, Nakata M, Ito T, Matsushita A, Yamaguchi S, Takahashi Y (2011) bZIP transcription factor RSG controls the feedback regulation of NtGA20ox1 via intracellular localization and epigenetic mechanism. Plant Signal Behav 6(1):26–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiss G, Gutierrez L, Bellini C (2009) Adventitious root formation: new insights and perspectives. In: Beeckman T (ed) Annual plant reviews, vol 37., Root DevelopmentWiley-Blackwell, Oxford, pp 127–156

    Google Scholar 

  • Giehl RFH, Lima JE, von Wiren N (2012) Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24:33–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant N, Onda Y, Kakizaki Y, Ito K, Watling J, Robinson S (2009) Two Cys or not two Cys, that is the question? Alternative oxidase in the thermogenic Nelumbo nucifera. Plant Physiol 150:987–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Li H, Zhang J (2010) Analysis of transcriptional synergy between upstream regions and introns in ribosomal protein genes of yeast. Comput Biol Chem 34:106–114

    Article  CAS  PubMed  Google Scholar 

  • Hutchison KW, Singer PB, McInnis S, Diaz-Sala C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM et al (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ketelaar T (2013) The actin cytoskeleton in root hairs: all is fine at the tip. Curr Opin Plant Biol 16:749–756

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  CAS  PubMed  Google Scholar 

  • Kwasniewski M, AgnieszkaJaniak A, Mueller-Roeber B, Szarejko I (2010) Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley. J Plant Physiol 167:1076–1083

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y (2011) Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18(1):17–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138(16):3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J (2008) Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J 55:927–939

    Article  CAS  PubMed  Google Scholar 

  • Li HM, Hu J, Zhang J (2010) Statistical analysis of potential synergistic motifs of the transcriptional regulation in ribosomal protein genes of fruit fly. J Yunnan Univ 32:338–345

    CAS  Google Scholar 

  • Li MY, Cao ZY, Shen WB, Cui J (2011) Molecular cloning and expression of a cucumber (Cucumissativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 486:47–55

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012a) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen D, Zhang J (2012b) Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS ONE 7(10):e46784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:2–3

    Article  Google Scholar 

  • Luo Y, Wang Z, Ji H, Fang H, Wang S, Tian L, Li X (2013) An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant J 75:377–389

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Kimura S, Demura T, Takeda J, Ozeki Y (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59(5):739–752

    Article  CAS  PubMed  Google Scholar 

  • McDonald AE (2009) Alternative oxidase: what information can sequence comparisons give us? Physiol Plant 137:328–341

    Article  CAS  PubMed  Google Scholar 

  • Mensuali-Sodi A, Panizza M, Tognoni F (1995) Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regul 17:205–212

    Article  CAS  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15

    Article  CAS  Google Scholar 

  • Muleo R, Morgante M, Velasco R, Cavallini A, Perrotta G, Baldoni L (2012) Olive tree genomics. In: Muzzalupo I (ed) Olive germplasm — the olive cultivation, table olive and olive oil industry in Italy. InTech, pp 133–148

  • Nimbalkar SB, Harsulkar AM, Giri AP et al (2006) Differentially expressed gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection. Physiol Mol Plant Pathol 68:176–188

    Article  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  CAS  PubMed  Google Scholar 

  • Nonis A, Vezzaro A, Ruperti B (2012) Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (Olea europaea L.) fruits. J Agric Food Chem 60(27):6855–6865

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH (2008) A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics 92:344–352

    Article  CAS  PubMed  Google Scholar 

  • Oliveros-Valenzuela MR, Reyes D, Sanchez-Bravo J, Acosta M, Nicolas C (2008) Isolation and characterization of a cDNA clone encoding an auxin influx carrier in carnation cuttings. Expression in different organs and cultivars and its relationship with cold storage. Plant Physiol Biotech 46:1071–1076

    Article  CAS  Google Scholar 

  • Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96

    Article  CAS  PubMed  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH et al (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peret B, Larrieu A, Bennett MJ (2009) Lateral root emergence: a difficult birth. J Exp Bot 60(13):3637–3643

    Article  CAS  PubMed  Google Scholar 

  • Polidoros AN, Mylona PV, Arnholdt-Schmitt B (2009) Aox gene structure, transcript variation and expression in plants. Physiol Plant 137:342–353

    Article  CAS  PubMed  Google Scholar 

  • Pop TI, Pamfil D, Bellini C (2011) Auxin control in the formation of adventitious roots. Not Bot HortiAgrobo 39:309–316

    Google Scholar 

  • Pyo H, Demura T, Fukuda H (2007) TERE, a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J 51:955–965

    Article  CAS  PubMed  Google Scholar 

  • Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99:160–168

    Article  CAS  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H et al (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Carvajal GA, Morse AM, Dervinis C, Davis JM (2009) The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 150(2):759–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rand K, Kobrinsky-Aaronowitz I, Levy Y, Shaul O, Aloni R, Gafni Y (2011) Induction of karyopherin α 1 expression by indole-3-acetic acid in auxin-treated or overproducing tobacco plants. Plant Signal Behav 6(6):815–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray DL, Johnson JC (2014) Validation of reference genes for gene expression analysis in olive (Oleaeuropaea) mesocarp tissue by quantitative real-time RT-PCR. BMC Res Notes 7:304

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Rauch GS, Siedow JN (1998) Regulation of the cyanide-resistant alternative oxidase of plant mitochondria: identification of the cysteine residue involved in α-keto acid stimulation and inter subunit disulfide bond formation. J Biol Chem 273:30750–30756

    Article  CAS  PubMed  Google Scholar 

  • Rigal A, Yordan YS, Perrone A et al (2012) The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol 160:1996–2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romer P, Strauss T, Hahn S, Scholze H, Morbitzer R, Grau J, Bonas U, Lahaye T (2009) Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiol 150:1697–1712

    Article  PubMed Central  PubMed  Google Scholar 

  • Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C, Vielba JM, Ferro E, Covelo G et al (2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol 27:1459–1470

    Article  PubMed  Google Scholar 

  • Santos Macedo E, Cardoso HG, Hernandez A (2009) Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiol Plant 137:532–552

    Article  PubMed  Google Scholar 

  • Santos Macedo E, Sircar D, Cardoso HG, Peixe A, Arnholdt-Schmitt B (2012) Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism. Plant Cell Rep 31:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani L, Tognetti R (2004) Growing season and hydrogen peroxide effects on root induction and development in Olea europaea L. (cvs ‘Frantoio’and ‘Gentile di Larino’) cuttings. Sci Hort 100(1):75–82

    Article  CAS  Google Scholar 

  • Seymour RS, Matthews PG (2006) The role of thermogenesis in the pollination biology of the Amazon water lily Victoria amazonica. Ann Bot 98:1129–1135

    Article  PubMed Central  PubMed  Google Scholar 

  • Smolka A, Welander M, Olsson P, Holefors A, Zhu LH (2009) Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Sci 177:710–715

    Article  CAS  Google Scholar 

  • Sole A, Sanchez C, Vielba JM, Valladares S, Abarca D, Diaz-Sala C (2008) Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol 28(11):1629–1639

    Article  CAS  PubMed  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci 2:275–281

    Article  Google Scholar 

  • Swarup K, Benkova E, Swarup R et al (2008) The auxin influx carrier 3 promotes lateral root emergence. Nature Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanimoto E (1991) Gibberellin requirement for the normal growth of roots. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer-Verlag, New York, pp 229–240

    Chapter  Google Scholar 

  • Thomas P, Schiefelbein J (2002) Cloning and characterization of an actin depolymerizing factor gene from grape (Vitis vinifera L.) expressed during rooting in stem cuttings. Plant Sci 162:283–288

    Article  CAS  Google Scholar 

  • Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33(6):957–966

    Article  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L, Yip JY (1998) Molecular localization of a redox modulated process regulating plant mitochondrial electron transport. Plant Cell 10:1551–1560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velasquez SM, Ricardi MM, Dorosz JG et al (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332(6036):1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Vielba JM, Díaz-Sala C, Ferro E et al (2011) CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells. Tree Physiol 31:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17:62–69

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hu J, Shi XF, Cao H, Liu WB (2003) Detection of potential positive regulatory motifs of transcription in yeast introns by comparative analysis of oligonucleotide frequencies. Comput Biol Chem 27:497–506

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zheng H, Li S, Yang C, Jiang J, Liu G (2014) The rooting of poplar cuttings: a review. New Forest 45:21–34

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed within the international collaboration between NIGEB (Tehran, Iran) and CNR-IBBR (Perugia, Italy). Also it was partial supported by the Project OLEA—Genomics and Breeding of Olive, funded by MIPAF, Italy and by the International Centre for Genetic Engineering & Biotechnology (ICGEB, Trieste, Italy).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Hosseini-Mazinani or Luciana Baldoni.

Additional information

Communicated by A. Feher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 10852 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayati, V., Mousavi, A., Razavi, K. et al. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings. Plant Cell Rep 34, 1151–1164 (2015). https://doi.org/10.1007/s00299-015-1774-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1774-0

Keywords

Navigation