Skip to main content

Gibberellin Requirement for the Normal Growth of Roots

  • Conference paper
Gibberellins

Abstract

Gibberellin (GA) strongly promotes shoot growth whereas it shows little effect on root elongation in GA-deficient dwarf plants (cf. Fig. 1) and in rosette plants.1 Although roots of dwarf maize and lettuce respond to exogenous GA in some experimental conditions,2,3 roots of these plants elongate normally without GA application. These phenomena suggest that roots do not require GA or require less GA than shoots. Thus, studies on the role of GA in root growth have been limited as compared with those in shoots.4–6 In order to evaluate GA requirements for root growth, the effects of the interaction of ancymidol7 and GA3 on the elongation growth of roots and shoots have been studied in lettuce seedlings and in dwarf and normal pea plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tanimoto E. Gibberellin-dependent root elongation in Lactuca sativa: Recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant Cell Physiol. 1987; 28: 963–973.

    CAS  Google Scholar 

  2. Mertz D. Hormonal control of root growth I. Plant Cell Physiol. 1966; 7: 125135.

    Google Scholar 

  3. Paleg L, Aspinall D, Coombe B, et al. Physiological effects of gibberellic acid. IV. Other gibberellins in three test systems. Plant Physiol. 1964; 39: 286–290.

    Article  PubMed  CAS  Google Scholar 

  4. Scott TK. Auxins and roots. Ann Rev Plant Physiol. 1972; 23: 235–258.

    Article  CAS  Google Scholar 

  5. Torrey JG. Root hormones and plant growth. Ann Rev Plant Physiol. 1976; 27: 435–459.

    Article  CAS  Google Scholar 

  6. Feldman LJ. Regulation of root development. Ann Rev Plant Physiol. 1984; 35: 223–242.

    Article  CAS  Google Scholar 

  7. Coolbaugh RC, Hamilton R. Inhibition of ent-kaurene oxidation and growth by a-cyclopropyl-a-(p-methoxyphenyl)-5-pyrimidine methyl alcohol. Plant Physiol. 1976; 57: 245–248.

    Article  PubMed  CAS  Google Scholar 

  8. Tanimoto E. Gibberellin regulation of root growth with change in galactose content of cell walls in Pisum sativum. Plant Cell Physiol. 1988; 29: 269–280.

    CAS  Google Scholar 

  9. Tanimoto E, Watanabe J. Automated recording of lettuce root elongation as affected by indole-3-acetic acid and acid pH by a new rhizometer with minimum mechanical contact to root. Plant Cell Physiol. 1986; 27: 1475–1487.

    CAS  Google Scholar 

  10. Tanimoto E. Roots require less gibberellin than shoots for normal elongation: An explanation for why roots of dwarf plants are not dwarf. In: Abstracts for the 13th International Conference on Plant Growth Substances, Calgary, 1988; Abstract No. 370.

    Google Scholar 

  11. Shive JB, Sisler HD. Effect of ancymidol (a growth retardant) and triarimol (a fungicide) on the growth, sterols, and gibberellins of Phaseolus vulgaris (L.). Plant Physiol. 1976; 57: 640–644.

    Article  PubMed  CAS  Google Scholar 

  12. Suge H Inhibition of flowering and growth in Pharbitis nil by the growth retardant ancymidol. Plant Cell Physiol. 1980; 21:1187–1192.

    CAS  Google Scholar 

  13. Wada K, Imai T. Effect of 1-n-decylimidazole on gibberellin biosynthesis in Tan-ginbouzu, a dwarf variety of rice. Agric Biol Chem. 1980; 44: 2511–2512.

    Article  CAS  Google Scholar 

  14. Potts WC, Reid JB, Murfet IC. Internode length in Pisum. I. The effect of the Le/le gene difference on endogenous gibberellin-like substances. Physiol Plant. 1982; 55: 323–328.

    Article  CAS  Google Scholar 

  15. Phinney BO. Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: Crozier A, Hillman JR, eds. The biosynthesis and metabolism of plant hormones. Cambridge: Cambridge University Press, 1984: pp. 17–41.

    Google Scholar 

  16. Spray CR, Yamane H, Phinney BO, et al. Endogenous gibberellins (GAs) & GA-like substances from the vegetative shoots of normal, dwarf-1 & dwarf-5 maize (Zea mays). Plant Physiol. 1984; 75: S94.

    Google Scholar 

  17. Potts WC, Reid JB, Murfet IC. Internode length in Pisum. Gibberellin and the slender phenotype. Physiol Plant. 1985; 63: 357–364.

    Article  CAS  Google Scholar 

  18. Britz SJ, Saftner RA Inhibition of growth by ancymidol and tetcyclacis in the gibberellin-deficient dwarf-5 mutant of Zea mays L. and its prevention by exogenous gibberellin. J Plant Growth Regul. 1987; 6: 215–219.

    CAS  Google Scholar 

  19. Ross JJ, Reid JB, Gaskin P, et al. Internode length in Pisum. Estimation of GAl levels in genotypes Le, le and led. Physiol Plant. 1989; 76: 173–176.

    Article  CAS  Google Scholar 

  20. Skene KGM, Mullins MG. Effect of CCC on the growth of roots of Vitis vinifera L. Planta. 1967; 77: 157–163.

    CAS  Google Scholar 

  21. Mita T, Shibaoka H. Effects of S-3307, an inhibitor of gibberellin biosynthesis, on swelling of leaf sheath cells and on the arrangement of cortical microtubules in onion seedlings. Plant Cell Physiol. 1984; 25: 1531–1539.

    CAS  Google Scholar 

  22. Lang A. Gibberellins: Structure and metabolism. Ann Rev Plant Physiol. 1970; 21: 537–570.

    Article  CAS  Google Scholar 

  23. Carr DJ, Reid DM, Skene KGM. The supply of gibberellins from the root to the shoot. Planta. 1964; 63: 382–392.

    Article  CAS  Google Scholar 

  24. Reid DM, Crozier A, Harvey, BMR. The effects of flooding on the export of gibberellins from the root to the shoot. Planta. 1969; 89: 376–379.

    Article  CAS  Google Scholar 

  25. Crozier A, Reid DM. Do roots synthesize gibberellins? Can J Bot. 1971; 49: 967–975.

    Article  CAS  Google Scholar 

  26. Reid DM, Crozier A. Effects of waterlogging on the gibberellin content and growth of tomato plants. J Exp Bot. 1971; 22: 39–48.

    Article  CAS  Google Scholar 

  27. Prochazka S. Translocation of growth regulators from roots in relation to the stem spical dominance in pea (Pisum sativum L.) seedlings. In: Brouwer R, Gasparikova O, Kolek J, Loughman BC, eds. Structure and function of plant roots. The Hague: Martinus Nijhoff/Dr W. Junk Publishers, 1981: p. 407–409.

    Google Scholar 

  28. Kaldewey H. Transport and other modes of movement of hormones (mainly auxins). In: Scott TK, ed. Hormonal regulation of development II. Encyclopedia of plant physiology, New series, Vol. 10. Berlin: Springer-Verlag, 1984: pp. 80–148.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Tanimoto, E. (1991). Gibberellin Requirement for the Normal Growth of Roots. In: Takahashi, N., Phinney, B.O., MacMillan, J. (eds) Gibberellins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3002-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3002-1_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7754-5

  • Online ISBN: 978-1-4612-3002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics