Skip to main content
Log in

Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Rice is the most important food crop worldwide. Global warming inevitably affects the grain yields of rice. Recent proteomics studies in rice have provided evidence for better understanding the mechanisms of thermal adaptation. Heat stress response in rice is complicated, involving up- or down-regulation of numerous proteins related to different metabolic pathways. The heat-responsive proteins mainly include protection proteins, proteins involved in protein biosynthesis, protein degradation, energy and carbohydrate metabolism, and redox homeostasis. In addition, increased thermotolerance in transgenic rice was obtained by overexpression of rice genes and genes from other plants. On the other hand, heterologous expression of some rice proteins led to enhanced thermotolerance in bacteria and other easily transformed plants. In this paper, we review the proteomic characterization of rice in response to high temperature and achievements of genetic engineering for heat tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie D, Sharma V, Ganesan K, Grover A (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51:543–553

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Donnart T, Nouri M, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  PubMed  CAS  Google Scholar 

  • Arumugam Pillai M, Lihuang Z, Akiyama T (2002) Molecular cloning, characterization, expression and chromosomal location of OsGAPDH. a submergence responsive gene in rice (Oryza sativa L.). Theor Appl Genet 105:34–42

    Article  PubMed  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology—towards genetically superior transgenic rice. Plant Biotechnol J 3:275–307

    Article  PubMed  CAS  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  PubMed  CAS  Google Scholar 

  • Barnabás B, Jäger K, FehER A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Battisti D (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Huang P, Lin H, Lu C (2007) Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol 48:1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Diop NN, Kidric M, Repellin A, Gareil M, d’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577:545–550

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Wang H, Xie J (2011) Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets? Int J Biol Sci 7:41–52

    PubMed  CAS  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, SkLodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxcol Environ Safe 73:996–1003

    Article  CAS  Google Scholar 

  • Gammulla C, Pascovici D, Atwell B, Haynes P (2010) Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 10:3001–3019

    Article  PubMed  CAS  Google Scholar 

  • Gao J-P, Chao D-Y, Lin H-X (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1:36–51

    Article  Google Scholar 

  • Goldberg A (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203:9–23

    Article  PubMed  CAS  Google Scholar 

  • Grudkowska M, Zagdanska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    PubMed  CAS  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35:105–118

    Article  PubMed  CAS  Google Scholar 

  • Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12:457–460

    Article  PubMed  CAS  Google Scholar 

  • Han F, Chen H, Li X, Yang M, Liu G, Shen S (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta 1794:1625–1634

    PubMed  CAS  Google Scholar 

  • Hong S-W, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176:583–590

    Article  CAS  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Wang M, Jiang Y, Bao Y, Huang X, Sun H, Xu D, Lan H, Zhang H (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420:135–144

    Article  PubMed  CAS  Google Scholar 

  • Hwang JE, Hong JK, Lim CJ, Chen H, Je J, Yang KA, Kim DY, Choi YJ, Lee SY, Lim CO (2010) Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Rep 29:905–915

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Goldschmidt EE, Riov J, Sadka A, Holland D (1997) Induction of a Citrus gene highly homologous to plant and yeast thi genes involved in thiamine biosynthesis during natural and ethylene-induced fruit maturation. Plant Mol Biol 35:661–666

    Article  PubMed  CAS  Google Scholar 

  • Jagadish S, Muthurajan R, Oane R, Wheeler T, Heuer S, Bennett J, Craufurd P (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  PubMed  CAS  Google Scholar 

  • Jha B, Sharma A, Mishra A (2010) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep. doi:10.1007/s11033-010-0625-x

  • Jin X, Xiong A, Peng R, Liu J, Gao F, Chen J, Yao Q (2010) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB rep 43:34–39

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Chen S, Dai S (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol 5:246–254

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  PubMed  CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Tóth B, Berzy T, Szalai G, Jednákovits A, Galiba G (2001) Glutathione reductase activity and chilling tolerance are induced by a hydroxylamine derivative BRX-156 in maize and soybean. Plant Sci 160:943–950

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Kobrehel K, Szalai G, Duviau MP, Buzás Z, Galiba G (2004) Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environ Exp Bot 52:101–112

    Article  CAS  Google Scholar 

  • Koh S, Lee S, Kim M, Koh J, Lee S, An G, Choe S, Kim S (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Lam E, Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417–428

    Article  PubMed  CAS  Google Scholar 

  • Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21:3749–3766

    Article  PubMed  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1, 5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386:261–267

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Ahsan N, Lee S, Kang K, Bahk J, Lee I, Lee B (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  PubMed  CAS  Google Scholar 

  • Lin C-J, Li C-Y, Lin S-K, Yang F-H, Huang J–J, Liu Y-H, Lur H-S (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58:10545–10552

    Article  PubMed  CAS  Google Scholar 

  • Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140–2156

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lu Z, Mao Z, Liu S (2009a) Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr Microbiol 58:129–133

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qin Q, Zhang Z, Peng R, Xiong A, Chen J, Yao Q (2009b) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42:16–21

    Article  PubMed  Google Scholar 

  • Lo Piero AR, Mercurio V, Puglisi I, Petrone G (2009) Gene isolation and expression analysis of two distinct sweet orange [Citrus sinensis L. (Osbeck)] tau-type glutathione transferases. Gene 443:143–150

    Article  PubMed  CAS  Google Scholar 

  • Massonneau A, Condamine P, Wisniewski JP, Zivy M, Rogowsky PM (2005) Maize cystatins respond to developmental cues, cold stress and drought. Biochim Biophys Acta 1729:186–199

    PubMed  CAS  Google Scholar 

  • Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091

    PubMed  CAS  Google Scholar 

  • Mathew A, Morimoto RI (1998) Role of the heat shock response in the life and death of proteins. Ann N Y Acad Sci 851:99–111

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196

    Google Scholar 

  • Momcilovic I, Ristic Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci UA 103:10122–10127

    Article  CAS  Google Scholar 

  • Narsai R, Castleden I, Whelan J (2010) Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biol 10:262

    Article  PubMed  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    Article  PubMed  CAS  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  PubMed  CAS  Google Scholar 

  • Portis AR (2003) Rubisco activase–Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  PubMed  CAS  Google Scholar 

  • Ristic Z, Wilson K, Nelsen C, Momcilovic I, Kobayashi S, Meeley R, Muszynski M, Habben J (2004) A maize mutant with decreased capacity to accumulate chloroplast protein synthesis elongation factor (EF-Tu) displays reduced tolerance to heat stress. Plant Sci 167:1367–1374

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98:196–200

    Article  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Saibil H (2000) Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr Opin Struct Biol 10:251–258

    Article  PubMed  CAS  Google Scholar 

  • Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27:627–632

    Article  PubMed  CAS  Google Scholar 

  • Satake T, Yoshida S (1978) High temperature-induced sterility in indica rices at flowering. Jpn J Crop Sci 47:6–17

    Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    Article  PubMed  CAS  Google Scholar 

  • Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  PubMed  CAS  Google Scholar 

  • Shah N, Paulsen G (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14:155–166

    Article  CAS  Google Scholar 

  • Sohn S, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plantarum 51:340–342

    Article  CAS  Google Scholar 

  • Sweetlove L, Heazlewood J, Herald V, Holtzapffel R, Day D, Leaver C, Millar A (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Timperio A, Egidi M, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  PubMed  CAS  Google Scholar 

  • Trent J (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    Article  CAS  Google Scholar 

  • Turóczy Z, Kis P, Török K, Cserháti M, Lendvai Á, Dudits D, Horváth G (2011) Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol Biol 75:399–412

    Article  PubMed  Google Scholar 

  • Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466:107–111

    Article  PubMed  CAS  Google Scholar 

  • van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7:400–407

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    Article  PubMed  CAS  Google Scholar 

  • Yeh CH, Chang PFL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16. 9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967–10972

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Mian M, Chekhovskiy K, So S, Kupfer D, Lai H, Roe BA (2005) Differential gene expression in Festuca under heat stress conditions. J Exp Bot 56:897–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of China (No.30870206) and Special Key Science and Technology Project of Hunan Province (no. 2009FJ1004-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Chen.

Additional information

Communicated by R. Reski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, J., Liu, C. & Chen, X. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30, 2155–2165 (2011). https://doi.org/10.1007/s00299-011-1122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1122-y

Keywords

Navigation