Skip to main content

Advertisement

Log in

Proteomic changes in rice leaves grown under open field high temperature stress conditions

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4 %), heat shock proteins (7.7 %), regulatory proteins (26.9 %), redox homeostasis proteins (11.5 %) and energy and metabolism (38.5 %) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140–2156

    Article  CAS  PubMed  Google Scholar 

  2. Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salomé Pais M (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Expl Bot 61(1):143–156

    Article  CAS  Google Scholar 

  4. Das S, Krishnan P, Monalisa N, Ramakrishnan B (2014) High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot 101:36–46

    Article  Google Scholar 

  5. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM, Field CB (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  6. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 01:9971–9975

    Article  Google Scholar 

  7. Weerakoon WMW, Maruyama A, Ohba K (2008) Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L.). J Agron Crop Sci 194:135–140

    Article  Google Scholar 

  8. Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S (2009) Regional vulnerability of climate change: impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  9. Mohammed AR, Tarpley L (2009) Impact of high night time temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci 49:313–322

    Article  Google Scholar 

  10. Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010) A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot 106(3):515–520

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhang G, Chen L, Zhang S, Zheng H, Liu G (2009) Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Sci 16:65–71

    Article  Google Scholar 

  12. Kim HJ, Song EJ, Lee KJ (2002) Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J Biol Chem 277:23193–23207

    Article  CAS  PubMed  Google Scholar 

  13. IRGSP (International Rice Genome Sequencing Project) (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  14. Umeda M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, Aotsuka S, Uchimiya H (1994) Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP-generating pathways. Plant Mol Biol 25:469–478

    Article  CAS  PubMed  Google Scholar 

  15. Gorantla M, Babu PR, Lachagari Reddy VB, Reddy AMM, Ramakrishna W, Jeffrey LB, Reddy Arjula R (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L) using ESTs generated from drought-stressed seedlings. J Exp Bot 58(2):253–265

    Article  CAS  PubMed  Google Scholar 

  16. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–327

    Article  CAS  PubMed  Google Scholar 

  17. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  18. Komatsu S (2005) Review—rice proteomics: a step toward functional analysis of stress responses. Curr Proteomics 2:325–333

    Article  CAS  Google Scholar 

  19. Cushman JC, Bohnert H (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal GK, Rakwal R (2011) Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 11(9):1630–1649

    Article  CAS  PubMed  Google Scholar 

  21. Majoul T, Bancel E, Triboï E, Ben Hamida J, Branlard G (2003) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175–183

    Article  CAS  PubMed  Google Scholar 

  22. Süle A, Vanrobaeys F, Hajó G, Van Beeumen J, Devreese B (2004) Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65:1853–1863

    Article  PubMed  Google Scholar 

  23. Chen HH, Shen ZY, Li PH (1982) Adaptability of crop plants to high temperature stress. Crop Sci 22:719–725

    Article  Google Scholar 

  24. Yoshida S (1981) Physiological analysis of rice yield. In: Yoshida S (ed) Fundamentals of rice crop science. International Rice Research Institute, Los Banos, pp 231–251

    Google Scholar 

  25. Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48:1140–1146

    Article  Google Scholar 

  26. Krishnan P, Ramakrishnan B, Das Smruti, Kumar Ritesh, Verma APS (2013) FATI technology to assess high temperature impact on rice crop. ICAR Newslett 19(2):2–3

    Google Scholar 

  27. Cho K, Tores NL, Subramanyam S, Deepak SA, Sardesai N, Han O, Williams CE, Ishii H, Kubo A, Iwahashi H (2006) Protein extraction/solubilization protocol for monocot and dicot plant gel-based proteomics. J Plant Biol 49(6):413–420

    Article  CAS  Google Scholar 

  28. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Imin N, Kerim T, Weinman JJ, Rolfe BG (2006) Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteomics 5:274–292

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Shi J, Tian D, Yang L, Luo Y, Yin D, Hu X (2011) Improved protein identification using a species-specific protein/peptide database derived from expressed sequence tags. Plant Omics J 4(5):257–263

    CAS  Google Scholar 

  31. Gupta OP, Mishra V, Singh NK, Tiwari R, Sharma P, Gupta RK, Sharma Indu (2015) Deciphering the dynamics of changing proteins of tolerant and intolerant wheat seedlings subjected to heat stress. Mol Biol Rep 42(1):43–51. doi:10.1007/s11033-014-3738-9

    Article  CAS  PubMed  Google Scholar 

  32. Sun Z, Biela LM, Hamilton KL, Reardon KF (2012) Concentration-dependent effects of the soy phytoestrogen genistein on the proteome of cultured Cardiomyocytes. J Proteomics 75:3592–3604

    Article  CAS  PubMed  Google Scholar 

  33. Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 180605

  34. Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58:10545–10552

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Takano T, Liu S (2006) Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.). J Exp Bot 57:193–200

    Article  CAS  PubMed  Google Scholar 

  36. Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2165

    Article  CAS  PubMed  Google Scholar 

  37. Lee DG, Ahsa N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH (2007) A proteomic approach in analyzing heat responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  CAS  PubMed  Google Scholar 

  38. Mittal D, Enoki Y, Lavania D, Singh A, Sakurai H, Grover A (2011) Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.). FEBS J 278:3076–3085

    Article  CAS  PubMed  Google Scholar 

  39. Zhu Y, Zhu G, Guo Q, Zhu Z, Wang C, Liu Z (2013) A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress. Int J Mol Sci 14:20614–20634

    Article  PubMed Central  PubMed  Google Scholar 

  40. Das S, Krishnan P, Monalisa N, Ramakrishnan B (2013) Changes in antioxidant isozymes as a biomarker for characterizing high temperature stress tolerance in rice (Oryza sativa L) spikelets. Exp Agric (UK) 49(1):53–73

    Article  Google Scholar 

  41. Krishnan P, Ramakrishnan B, Raja Reddy K, Reddy VR (2011) High temperature stress effects on rice plant growth and yield. Adv Agron 111:87–206

    Article  CAS  Google Scholar 

  42. Chen X, Zhang W, Zhang B, Zhou J, Wang Y, Yang Q, Ke Y, He H (2011) Phosphoproteins regulated by heat stress in rice leaves. Proteome Sci 9:37

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mizuno K, Iida T, Takano A, Yokoyama M, Fujimura T (2003) A new 9-lipoxygenase cDNA from developing rice seeds. Plant Cell Physiol 44:1168–1175

    Article  CAS  PubMed  Google Scholar 

  44. Osugi A, Itoh Hironori, Ikeda-Kawakatsu Kyoko, Takano Makoto, Izawa Takeshi (2011) Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol 157(3):1128–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pujol C, Bailly M, Kern D, Maréchal-Drouard L, Becker H, Duchêne AM (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc Natl Acad Sci USA 105(17):6481–6485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hirano K, Hino Shingo, Oshima Kenzi, Okajima Tetsuya, Nadano Daita, Urisu Atsuo, Takaiwa Fumio, Matsuda Tsukasa (2013) Allergenic potential of rice pollen proteins: expression, immuno-cross reactivity and IgE-binding. J Biochem 154(2):195–205

    Article  CAS  PubMed  Google Scholar 

  47. Hartmann J, Stührwohldt N, Dahlke RI, Sauter M (2013) Phytosulfokine control of growth occurs in the epidermis, is likely to be non-cell autonomous and is dependent on brassinosteroids. Plant J 73:579–590

    Article  CAS  PubMed  Google Scholar 

  48. Rocco M, Arena S, Renzone G, Scippa GS, Lomaglio T, Verrillo F, Scaloni A, Marra M (2013) Proteomic analysis of temperature stress-responsive proteins in Arabidopsis thaliana rosette leaves. Mol BioSyst 9:1257–1267

    Article  CAS  PubMed  Google Scholar 

  49. Janniere L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, Monnier AF, Chapuis J, Bolotin A, Marina T, Le Chatelier E, Ehrlich SD (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2(5):e447

    Article  PubMed Central  PubMed  Google Scholar 

  50. Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64(11):3201–3212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Science and Engineering Research Council (SERC), Department of Science and Technology (DST), Government of India, for the project on “High temperature stress response and associated changes in growth and yield of rice (Oryza sativa L),” to P. K. and B. R. We acknowledge the facilities and support provided by the Director, ICAR-IARI, New Delhi and Project Director, ICAR-NRCPB, New Delhi. S. Das is grateful to DST for the support of Junior Research Fellowship. None of the co-authors have a conflict of interest in submitting this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krishnan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Krishnan, P., Mishra, V. et al. Proteomic changes in rice leaves grown under open field high temperature stress conditions. Mol Biol Rep 42, 1545–1558 (2015). https://doi.org/10.1007/s11033-015-3923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3923-5

Keywords

Navigation