Skip to main content
Log in

Salt stress response in rice: genetics, molecular biology, and comparative genomics

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Significant progress has been made in unraveling the molecular biology of rice in the past two decades. Today, rice stands as a forerunner amongst the cereals in terms of details known on its genetics. Evidence show that salt tolerance in plants is a quantitative trait. Several traditional cultivars, landraces, and wild types of rice like Pokkali, CSR types, and Porteresia coarctata appear as promising materials for donation of requisite salt tolerance genes. A large number of quantitative trait loci (QTL) have been identified for salt tolerance in rice through generation of recombinant inbred lines and are being mapped using different types of DNA markers. Salt-tolerant transgenic rice plants have been produced using a host of different genes and transcript profiling by micro- and macroarray-based methods has opened the gates for the discovery of novel salt stress mechanisms in rice, and comparative genomics is turning out to be a critical input in this respect. In this paper, we present a comprehensive review of the genetic, molecular biology, and comparative genomics effort towards the generation of salt-tolerant rice. From the data on comprehensive transcript expression profiling of clones representing salt-stress-associated genes of rice, it is shown that transcriptional and translational machineries are important determinants in controlling salt stress response, and gene expression response in tolerant and susceptible rice plants differs mainly in quantitative terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    PubMed  CAS  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    PubMed  CAS  Google Scholar 

  • Agarwal S, Grover A (2005) Isolation and transcription profiling of anaerobic stress associated cDNA clones from flooding stress tolerant FR13A rice genotype. Ann Bot 96:831–844

    PubMed  CAS  Google Scholar 

  • Akbar M, Gunawardena IE, Ponnamperuma FN (1986a) Breeding for soil stresses. In: International Rice Research Institute (ed) Progress in rainfed lowland rice. International Rice Research Institute, Manila, Philippines, pp 263–272

    Google Scholar 

  • Akbar M, Khush GS, Hillerislambers D (1986b) Genetics of salt tolerance in rice. In: International Rice Research Institute (ed) Progress in rainfed lowland rice. International Rice Research Institute, Manila, Philippines, pp 399–409

    Google Scholar 

  • Akbar M, Jena KK, Seshu DV (1987) Salt tolerance in wild rices. Int Rice Res Newsl 12:15

    Google Scholar 

  • Alia, KondoY, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Scheffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Amaya I, Botella MA, De La Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84

    PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115:3227–3234

    PubMed  CAS  Google Scholar 

  • Anil VS, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plant 124:451–464

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    PubMed  CAS  Google Scholar 

  • Asadulghani, Nitta K, Kaneko Y, Kojima K, Fukuzawa H, Kosaka H, Nakamoto H (2004) Comparative analysis of the hspA mutant and wild-type Synechocystissp. Strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Arch Microbiol 182:487–497

    PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bhumbla D, Abrol I (1978) Saline and sodic soils. In: Soils and rice. International Rice Research Institute, Manila, Philippines, pp 719–738

  • Blumwald E, Grover A (2006) Salt tolerance. In: Halford NG (ed) Plant biotechnology: current and future uses of genetically modified crops. John Wiley and Sons Ltd., UK, pp 206–224

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman, MA, Deyholos M, Fischer R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-Eda S, Lee B-H, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomics approach toward salt stress tolerance. Plant Physiol Biochem 39:295–311

    CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    PubMed  CAS  Google Scholar 

  • Causse M, Fulton T, Cho Y, Ahn S, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P, Harrington S, Second G, McCouch S, Tanksley S (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 3:559–574

    Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, van den Bulcke M, Bauw G, Van Montagu M (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    PubMed  CAS  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    CAS  Google Scholar 

  • Cooper B, Clarke J D, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    PubMed  CAS  Google Scholar 

  • Denekamp M, Smeekens SC (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132:1415–1423

    PubMed  CAS  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107

    PubMed  CAS  Google Scholar 

  • Dubey H, Grover A (2001) Current initiatives in proteomics research: the plant perspective. Curr Sci 80:262–269

    CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    PubMed  CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 25:469–486

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol 88:363–373

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity tolerance in crop plants. Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) Salt tolerance in the halophytic wild rice Porteresia coarctata Tateoka. New Phytol 114:675–684

    CAS  Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    PubMed  CAS  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTb, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Salem MB (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    PubMed  CAS  Google Scholar 

  • Francki M, Appels R (2002) Wheat functional genomics and engineering crop improvement. Genome Biol 3:1013.1–1013.5

    Google Scholar 

  • Freemont PS (2000) Ubiquitination: RING for destruction? Curr Biol 10:84–87

    Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 45:146–159

    PubMed  CAS  Google Scholar 

  • Gao X, Ren Z, Zhao Y, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol133:1873–1881

    PubMed  CAS  Google Scholar 

  • Garcia AB, de Almeida JE, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    PubMed  CAS  Google Scholar 

  • Gepstein S, Grover A, Blumwald E (2006) Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat and drought. In: Knablein J, Muller RH (eds) Modern biopharmaceuticals. Wiley-VCH Verlag GmbH, Weinhaum, pp 967–994

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumota TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375

    PubMed  CAS  Google Scholar 

  • Goossens A, Dever TE, Pascual-Ahuir A, Serrano R (2001) The protein kinase Gcn2p mediates sodium toxicity in yeast. J Biol Chem 276:30753–30760

    PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101

    Google Scholar 

  • Grover A (2002) Molecular biology of stress responses. Cell Stress Chaperones 7:1–15

    PubMed  Google Scholar 

  • Grover A, Pental D (2003) Breeding objectives and requirements for producing transgenic for the major field crops of India. Curr Sci 84:310–320

    Google Scholar 

  • Grover A, Pareek A, Maheshwari SC (1993) Molecular approaches for genetically engineering plants tolerant to salt stress. Proc Indian Natl Sci Acad B 59:113–127

    CAS  Google Scholar 

  • Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    PubMed  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium PG, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Plant J 12:133–142

    PubMed  CAS  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fibre yield in the field. Plant Cell Physiol 46:1848–1854

    PubMed  CAS  Google Scholar 

  • Hirochika H, Guiderdoni E, AnG, Hsing Y, Eun MY, Han C, Upadhyaya N, Ramachandran R, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    PubMed  CAS  Google Scholar 

  • Holmstrom KO, Somersalo S, Manda A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    PubMed  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    PubMed  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34:D717–D723

    PubMed  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    PubMed  CAS  Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    PubMed  CAS  Google Scholar 

  • Kanno A, Hirai A (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr Genet 23:166–174

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6:132–142

    PubMed  CAS  Google Scholar 

  • Khan MSA, Hamid A, Karim MA (1997) Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). J Agron Crop Sci 179:163–169

    Article  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    PubMed  Google Scholar 

  • Kim KY, Park SW, Chung YS, Chung CH, Kim JI, Lee JH (2004) Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot 55:1153–1155

    PubMed  CAS  Google Scholar 

  • Kishore PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Komatsu S, Konishi H, Shen S, Yang G (2003) Rice proteomics. Mol Cell Proteomics 2.1:2–10

    Google Scholar 

  • Kong-ngern K, Daduang S, Wongkham C, Bunnag S, Kosittrakun M, Theerakulpisut (2005) Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Sci Asia 31:403–408

    CAS  Google Scholar 

  • Kore-Eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83–92

    PubMed  Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    PubMed  CAS  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    PubMed  CAS  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    PubMed  CAS  Google Scholar 

  • Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129

    PubMed  CAS  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180

    CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    PubMed  CAS  Google Scholar 

  • Lorieux M, Petror M, Huang N, Guiderdoni E, Ghesquier A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet 93:1145–1151

    CAS  Google Scholar 

  • Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) Link and its overexpression in transgenic tobaccos. J Integr Plant Biol 47:343–349

    CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    CAS  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    PubMed  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant l-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279:28539–28552

    PubMed  CAS  Google Scholar 

  • McCouch, SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffiman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    CAS  Google Scholar 

  • McCouch S, Teytelman L, Xu Y, Lobos K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development of 2,240 new SSR markers for rice (Oryza sativa L.) DNA Res 9:199–207

    PubMed  CAS  Google Scholar 

  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136:3290–3300

    PubMed  CAS  Google Scholar 

  • Minhas D, Grover A (1999) Transcript levels of genes encoding various glycolytic and fermentation enzymes change in response to abiotic stress. Plant Sci 146:41–51

    CAS  Google Scholar 

  • Mishra B, Singh RK (2000) CSR27, a fine grain salt tolerant variety of rice released. Salinity News 11:3

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    PubMed  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    PubMed  CAS  Google Scholar 

  • Montero-Lomeli M, Morais BLB, Figueiredo DL, Neto DCS, Martins JRP, Masuda CA (2002) The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J Biol Chem 277:21542–21548

    PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van-Montagu M, Straeten VDD (1995) Molecular and physiological responses to abscisic acid and salt in roots in salt-sensitive and salt tolerant indica rice varieties. Plant Physiol 107:177–186

    PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshida, K, Ono H, Murooka Y, Shinmyo A (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247

    PubMed  CAS  Google Scholar 

  • Nandi S, Subudhi PK, Senadhira D, Maigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.FEBS Lett 461:205–210

    PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Gen Genet 268:434–445

    CAS  Google Scholar 

  • O’ Mahony PJ, Oliver MJ (1999) The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol Biol 41:657–667

    Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using a 7000 full-length cDNA microarray. Plant J 34:868–887

    PubMed  CAS  Google Scholar 

  • Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo M, Koiwa H, Yun DJ, Watad AA, Bressan RA, Hasegawa PM (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA 95:9681–9686

    PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A (1995) Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in different plant genera. Plant Mol Biol 29:293–301

    PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A (1997) Salt responsive proteins/genes in crop plants. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Science Publishers, USA, pp 365–382

    Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    PubMed  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    PubMed  CAS  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    PubMed  CAS  Google Scholar 

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000a) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000b) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499

    CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high- salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    PubMed  CAS  Google Scholar 

  • Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34:257–267

    PubMed  CAS  Google Scholar 

  • Reddy AR, Ramakrishna W, Chandra Shekhar A, Ithal N, Babu PR, Bonaldo FM, Soares B, Bennetzen JL (2002) Novel genes are enriched in normalized cDNA libraries from drought stressed seedlings of indica rice (Oryza sativa L. subsp. indica cv. Nagina 22). Genome 45:204–211

    PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    PubMed  CAS  Google Scholar 

  • Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J 18:490–499

    PubMed  CAS  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    PubMed  CAS  Google Scholar 

  • Roy M, Jain RK, Rohila JS, Wu R (2000) Production of agronomically superior transgenic rice plants using Agrobacterium transformation methods: present status and future perspectives. Curr Sci 79:954–960

    CAS  Google Scholar 

  • Sahi C, Agarwal M, Reddy MK, Sopory SK, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor Appl Genet 106:620–628

    PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9

    Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Alia, Murata N, Murata A (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    PubMed  CAS  Google Scholar 

  • Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    PubMed  CAS  Google Scholar 

  • Santerre A, Britt AB (1994) Cloning of a 3-methyladenine-DNA glycosylase from Arabidopsis thaliana. Proc Natl Acad Sci USA 91:2240–2244

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninici P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray.Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nokajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    PubMed  CAS  Google Scholar 

  • Shimamoto K (1999) Molecular biology of rice, Springer-Verlag, Tokyo

  • Shiozaki N, Yamada M, Yoshiba Y (2005) Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theor Appl Genet 110:1177–1186

    PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxylase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (1998) Proline suppresses Rubisco activity in higher plants. Biochem Biophys Res Commun 252:428–432

    PubMed  CAS  Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na/H antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771

    PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis can enhance osmotolerance upon overexpression. Plant J 27:407–415

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Kakutani T, Hirochika H (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J 28:307–317

    PubMed  CAS  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamayad T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95

    Google Scholar 

  • Tanaka Y, Hibin T, Hayashi Y, Tanaka A, Kishitani S. Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert H (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    PubMed  CAS  Google Scholar 

  • Tsunematsu H, Yoshimura A, Horushima Y, Nagamura Y, Kurata N, Yano M, Sasaki T, Iwata N (1996) RFLP framework map using recombinant inbred lines in rice. Breed Sci 46:279–284

    Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki B, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Veena J, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    PubMed  CAS  Google Scholar 

  • Vernon DM, Tarczynski, MC, Jensen RG, Bohnert HJ (1993) Cyclitol production in transgenic tobacco. Plant J 4:199–205

    CAS  Google Scholar 

  • Vierstra RD, Callis J (1999) Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol Biol 41:435–442

    PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Wahi A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    PubMed  CAS  Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    PubMed  CAS  Google Scholar 

  • Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plant 48:509–515

    CAS  Google Scholar 

  • Wendler WM, Kremmer E, Forster R, Winnacker EL (1997) Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 272:8482–8489

    PubMed  CAS  Google Scholar 

  • Widawsky DA, O’Toole JC (1990) Prioritizing rice biotechnology research agenda for Eastern India. The Rockefeller Foundation, New York, USA

  • Wood AJ, Oliver MJ (1999) Translational control in plant stress: formation of messenger ribonucleoprotein complexes (mRNPs) in Tortula ruralis in response to desiccation.Plant J 18:359–370

    CAS  Google Scholar 

  • Wood AJ, Duff RJ, Oliver MJ (2000) The translational apparatus of Tortula ruralis: polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16 and RPL23 in desiccated and rehydrated gametophytes. J Exp Bot 51:1655–1662

    PubMed  CAS  Google Scholar 

  • Wool IG (1996) Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 21:164–165

    PubMed  CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/K+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    PubMed  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen ZL, Qu LJ (2005) Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci. 168:297–302

    CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant (LEA) protein gene, HVA1, from barley confers tolerance to drought and salinity in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    CAS  Google Scholar 

  • Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632

    CAS  Google Scholar 

  • Yeo AR, Caporn SJM, Flowers TJ (1985) The effect of salinity upon photosynthesis in rice (Oryza sativa L.): gas exchange by individual leaves in relation to their salt content. J Exp Bot 36:1240–1248

    CAS  Google Scholar 

  • Yilmaz JL, Bulow L (2002) Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein. Biotechnol Prog 18:1176–1182

    PubMed  CAS  Google Scholar 

  • Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1gene. Acta Bot Sin 46:854–861

    CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    PubMed  CAS  Google Scholar 

  • Zhang G-Y, Guo Y, Chen S-L, Chen S-Y (1995) RFLP tagging of a salt tolerant gene in rice. Plant Sci 110:227–224

    Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:6896–6901

    Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006a) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    CAS  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006b) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104

    Google Scholar 

  • Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci 139:41–48

    CAS  Google Scholar 

Download references

Acknowledgements

AG is thankful to the Department of Biotechnology (DBT), Government of India and National Agriculture Technology Project (NATP), Indian Council of Agricultural Research (ICAR), Government of India, for the financial support. CS and AS acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi for the fellowship grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Grover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahi, C., Singh, A., Kumar, K. et al. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6, 263–284 (2006). https://doi.org/10.1007/s10142-006-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0032-5

Keywords

Navigation