Skip to main content
Log in

Tailoring the optical and dielectric properties of PVC/CuO nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The solvent casting method has been applied to prepare PVC/CuO nanocomposite films with CuO ratios (0, 2.5, 5.0, 10.0 and 15.0 wt%). X-ray diffraction (XRD), Fourier transform infrared spectroscopy, optical absorption and dielectric experimental analysis are applied to these nanocomposite films. The CuO nanoparticles have been prepared by using sol–gel method. XRD pattern analysis revealed the formation of CuO (30 nm) single-phase with monoclinic structure and space group C2/c and the amorphous structure of polyvinyl chloride (PVC) matrix. Energy-dispersive X-ray data revealed the increase in CuO content, and scanning electron microscopy morphology analysis approved the dispersion of CuO nanoparticles on the PVC film surface. The optical absorption increased with CuO content, while the transmission decreased. Both direct and indirect energy gaps decrease, while the Urbach energy increases as CuO content increases. The real dielectric permittivity enhanced as the concentration of CuO increased and the imaginary permittivity showed single relaxation at high frequency. The estimated values of both static and high-frequency dielectric constant increased as CuO percentage increases. The presence of CuO causes increase in the loss tangent values for the PVC/CuO polymer films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared spectroscopy

EDX:

Energy dispersive X-ray

SEM:

Scanning electron microscopy

THF:

Tetrahydrofuran

PVC:

Polyvinyl chloride

PVA:

Poly(vinyl alcohol)

TEM:

Transmission electron microscopy

References

  1. Taha TA, Saleh A (2018) Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl Phys A Mater Sci Process 124:600

    Article  Google Scholar 

  2. Mahmoud WE, Al-Ghamdi AA (2011) The influence of Cd (ZnO) on the structure, optical and thermal stabilities of polyvinyl chloride nanocomposites. Polym Compos 32(7):1143–1147

    Article  CAS  Google Scholar 

  3. Taha TA (2019) Optical properties of PVC/Al2O3 nanocomposite films. Polym Bull 76(2):903

    Article  CAS  Google Scholar 

  4. Taha TA, Hendawy NN, El-Rabaie S, Esmat A, El-Mansy MK (2018) Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym Bull 76(9):4769

    Article  Google Scholar 

  5. Taha TA, Ismail Z, Elhawary MM (2018) Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl Phys A 124(4):307

    Article  Google Scholar 

  6. Taha TA (2017) Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci Mater Electron 28(16):12108

    Article  CAS  Google Scholar 

  7. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B Eng 47:314

    Article  CAS  Google Scholar 

  8. Fuks-Janczarek I, Kobayashi K, Chen XM, Oyama M, Wojciechowski A, Pepczyńska M, Kityk IV (2014) Nonlinear optical features of δ-BiB3O6/PVA polymer nanocomposites deposited on aluminum-doped zinc oxide substrates containing Ag nanoparticles. Physica E 64:1–6

    Article  CAS  Google Scholar 

  9. Kumar NB, Crasta V, Bhajantri RF, Praveen BM (2014) Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym 2014:1–7

    Article  Google Scholar 

  10. Raju G, Buddhudu S, Rajulu A (2006) Red emission from Eu3+: PVA polymer film. J Appl Polym Sci 102:3273–3276

    Article  CAS  Google Scholar 

  11. Rudko GY, Vorona IP, Fediv VI, Kovalchuk A, Stehr JE, Shanina BD, Chen WM, Buyanova IA (2017) Luminescent and optically detected magnetic resonance studies of CdS/PVA nanocomposite. Nanoscale Res Lett 12:130

    Article  Google Scholar 

  12. Ebnalwaleda AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. J Synth Met 220:374–383

    Article  Google Scholar 

  13. Sayed AM, Morsi WM (2013) Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Polym Compos 34(12):2031–2039

    Article  CAS  Google Scholar 

  14. Taha TA, Azab AA (2019) Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J Mol Struct 1178:39–44

    Article  CAS  Google Scholar 

  15. Taha TA, Elrabaie S, Attia MT (2018) Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J Mater Sci Mater Electron 29(21):18493–18501

    Article  CAS  Google Scholar 

  16. Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E (2000) Polym Degrad Stab 68(3):363–371

    Article  CAS  Google Scholar 

  17. Giuffrida S, Condorelli GG, Costanzo LL, Ventimiglia G, Di Mauro A, Fragalà IL (2008) In situ synthesis of photoluminescent films of PVC, doped with Ce3+ ion. J Photochem Photobiol A 195(2):215–222

    Article  CAS  Google Scholar 

  18. Mortazavi SH, Ghoranneviss M, Faryadras S (2012) J Fusion Energy 31(3):211–215

    Article  CAS  Google Scholar 

  19. Gündüz B (2015) Optical properties of poly [2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym Bull 72(12):3241–3267

    Article  Google Scholar 

  20. Raja V, Sarma AK, Rao VN (2003) Optical properties of pure and doped PMMA-CO-P4VPNO polymer films. Mater Lett 57(30):4678–4683

    Article  CAS  Google Scholar 

  21. Taha TA, Elrabaie S, Attia MT (2019) Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J Electr Mater 48(10):6797

    Article  CAS  Google Scholar 

  22. Giuntini JC, Zanchetta JV, Jullien D, Eholie R, Houenou P (1981) Temperature dependence of dielectric losses in chalcogenide glasses. J Non Cryst Solids 45(1):57–62

    Article  CAS  Google Scholar 

  23. Shukla N, Thakur AK, Archana S, Ratnamala C (2014) Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J Mater Sci Mater Electron 25(6):2759–2770

    Article  CAS  Google Scholar 

  24. Taha TA, Azab AA (2016) AC conductivity and dielectric properties of borotellurite glass. J Electr Mater 45(10):5170–5177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Abouhaswa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Taha, T.A. Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2020). https://doi.org/10.1007/s00289-019-03059-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03059-5

Keywords

Navigation