Skip to main content

Advertisement

Log in

Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dispersed phase polymer nanocomposite films (PNC) based on PMMA–LiClO4+ n-YSZ, has been prepared. The effect of filler concentration on dielectric constant, tanδ and ac conductivity has been observed. For each PNC films the activation energy for relaxation (Eτ) is almost same as the activation energy for ion conduction (Ea). The dc conductivity, the hopping frequency of charge carriers have been obtained at different temperature from the analysis of the ac conductivity data. For all the PNC films, the concentration of charge carriers has been calculated at different temperature using Almond–West formalism. The estimated activation energies for the dc conductivity and the hopping frequency are different, which indicates that the both charge carrier mobility and concentration contribute significantly to the ionic conductivity of polymeric electrolyte. Contribution of charge carrier mobility to the total conductivity has also been confirmed from the differential scanning calorimetry analysis. Improvement in thermal stability has been noticed with filler addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Scrosati, Applications of Electroactive Polymers (Chapman and Hall, London, 1993)

    Book  Google Scholar 

  2. Y. Lin, J. Li, Y. Lai, C. Yuan, Y. Cheng, J. Liu, RSC Adv 3, 10722 (2013)

    Article  Google Scholar 

  3. Y. Zhao, Y. Zhang, D. Gosselink, L. Doan, M. Sadhu, H. Cheang, P. Chen, Membranes 2, 553 (2012)

    Article  Google Scholar 

  4. C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, Nano Lett. 12, 1152 (2012)

    Article  Google Scholar 

  5. N. Shukla, A.K. Thakur, J Non Cryst Solids 357, 3689 (2011)

    Article  Google Scholar 

  6. S. Ramesh, A.K. Arof, J. Mater. Sci. 44, 6404 (2009)

    Article  Google Scholar 

  7. A.L. Sharma, N. Shukla, A.K. Thakur, Polym Sci B Polym Phys 46, 2577 (2008)

    Article  Google Scholar 

  8. S.B. Aziz, Z.H.Z. Abidin, J Soft Matt 2013, 1 (2013)

    Article  Google Scholar 

  9. C.A. Angell, C. Lin, E. Sanchez, Nature 362, 137 (1993)

    Article  Google Scholar 

  10. T.Z. Rizvi, A. Shakoor, J. Phys. D Appl. Phys. 42, 095415 (2009)

    Article  Google Scholar 

  11. S.R. Mohapatra, A.K. Thakur, T. Sakuma, J. Phys. Soc. Jpn. 79, 169 (2010)

    Article  Google Scholar 

  12. G. Mao, R.F. Perea, W.S. Howells, D.L. Price, M.L. Saboungi, Nature 405, 163 (2000)

    Article  Google Scholar 

  13. T.A. Luther, F.F. Stewart, J.L. Budzien, R.A.L. Violette, W.F. Bauer, M.K. Harrup, J Phys Chem B 107, 3168 (2003)

    Article  Google Scholar 

  14. D. Saikia, Y.W.C. Yang, Y.T. Chen, Y.K. Li, S.I. Lin, Electrochim. Acta 54, 1218 (2009)

    Article  Google Scholar 

  15. Peng HG, Tyagi M (2012) Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells. In: Kirt A, Soles CL (eds). ACS Symposium Series, p 67

  16. Y.G. Andreev, P.G. Bruce, J. Phys.: Condens. Matter 13, 8245 (2001)

    Google Scholar 

  17. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Mater. Chem. Phys. 115, 557 (2009)

    Article  Google Scholar 

  18. M. Ravi, S. Bhavani, Y. Pavani, V.V.R.N. Rao, Indian J. Pure Appl. Phys. 51, 362 (2013)

    Google Scholar 

  19. D.P. Almond, A.R. West, Solid State Ionics 9, 277 (1983)

    Article  Google Scholar 

  20. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159 (1983)

    Article  Google Scholar 

  21. D.P. Almond, C.C. Hunter, A.R. West, J. Mater. Sci. 19, 3236 (1984)

    Article  Google Scholar 

  22. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  23. R. Mishra, K.J. Rao, Solid State Ionics 106, 113 (1998)

    Article  Google Scholar 

  24. M.M. Gomaa, P. Alikaj, Mar. Geophys. Res. 30, 265 (2009)

    Article  Google Scholar 

  25. J.R. Macdonald, Impedance spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  26. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  27. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar, H. Nithya, Phys. B 403, 274 (2008)

    Article  Google Scholar 

  28. B.G. Soares, M.E. Leyva, G.M.O. Barra, D. Khastgir, Eur Polym J 42, 676 (2006)

    Article  Google Scholar 

  29. G.X.N. Qian, Z. Cheng, X. Yang, E. Wang, S. Dong, Electrochim. Acta 46, 1829 (2001)

    Article  Google Scholar 

  30. S. Ramesh, A.H. Yhaya, A.K. Arof, Solid State Ionics 152, 291 (2002)

    Article  Google Scholar 

  31. M. Mudarra, R.D. Calleja, J. Belana, J.C. Can˜adas, J.A. Diego, J.M. Sellare`s, J. Sanchı´s, Polymer 42, 1647 (2000)

    Google Scholar 

  32. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A Appl. Sci. Manuf. 33, 375 (2002)

    Article  Google Scholar 

  33. S. Ibrahim, S.M.M. Yasin, N.M. Nee, R. Ahmad, M.R. Johan, Solid State Commun. 152, 426 (2012)

    Article  Google Scholar 

  34. K. Prabakar, S.K. Narayandas, D. Mangalraj, Mater. Sci. Eng., B 98, 225 (2003)

    Article  Google Scholar 

  35. A.M. Abo, E. Ata, S.M. Attia, T.M. Meaz, Solid State Sci. 6, 61 (2004)

    Article  Google Scholar 

  36. K.P. Singh, P.N. Gupta, Eur Polym J 34, 1023 (1998)

    Article  Google Scholar 

  37. A.S.A. Khiar, A.K. Arof, Indones J Phys 22, 129 (2011)

    Google Scholar 

  38. T. Furukawa, M. Imura, H. Yuruzume, Jpn. J. Appl. Phys. 36, 1119 (1997)

    Article  Google Scholar 

  39. P.S. Anantha, K. Hariharan, Mater. Sci. Eng., B 121, 12 (2005)

    Article  Google Scholar 

  40. W. Wieczorek, Z. Florjanczyk, J.R. Stevens, Electrochim. Acta 40, 2251 (1995)

    Google Scholar 

  41. N. Shukla, A.K. Thakur, J. Mater. Sci. 45, 4236 (2010)

    Article  Google Scholar 

  42. H.W. Chen, C.Y. Chiu, F.C. Chang, Polym Sci B Polym Phys 40, 1342 (2002)

    Article  Google Scholar 

  43. R. Prasanth, V. Aravindan, M. Srinivasan, J. Power Sources 202, 299 (2012)

    Article  Google Scholar 

  44. J.M.O. Reilly, H.E. Bair, F.E. Karasz, Macromolecules 15, 1083 (1982)

    Article  Google Scholar 

  45. P. Meneghetti, S. Qutubuddin, Thermochim. Acta 442, 74 (2006)

    Article  Google Scholar 

  46. M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polym. Compos. 30, 95 (2009)

    Article  Google Scholar 

  47. M.I. Sarwar, S. Zulfiqar, Z. Ahmad, J. Sol-Gel. Sci. Technol. 45, 89 (2008)

    Article  Google Scholar 

  48. N. Sukpirom, M.M. Lerner, Polym. Mater. Sci. Eng. 333, 218 (2002)

    Article  Google Scholar 

  49. S. Zulfiqar, I. Lieberwirth, Z. Ahmad, M. Sarwar, Acta Mater. 56, 4905 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (NS) acknowledges with thanks the financial support received from the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi for carrying out the research at the Department of Physics, Indian Institute of Delhi (IITD), Hauz Khas, New Delhi 110016, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, N., Thakur, A.K., Shukla, A. et al. Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J Mater Sci: Mater Electron 25, 2759–2770 (2014). https://doi.org/10.1007/s10854-014-1940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1940-0

Keywords

Navigation