Skip to main content
Log in

Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb3O4 nanoparticles were embedded in a Polyvinyl chloride (PVC) polymer matrix with different filler ratios 0, 1, 2, 3 and 4 wt%. The nanocomposite films are prepared at room temperature via solution-casting technique. XRD analysis showed that pure PVC film is partially crystalline and Pb3O4 nanoparticles have a tetragonal crystal structure. TEM revealed nearly spherical Pb3O4 nanoparticles with average size around 24.3 nm which is very close to that obtained from XRD. Scanning electron microscopy micrographs indicated a PVC film with uniform surface morphology and Pb3O4 nanoparticles are well dispersed on the PVC surface. The optical band gap, Eopt, values calculated from optical absorption spectra decreased from 5.05 to 4.34 eV with increasing Pb3O4 wt%. Also, both Fermi energy, EF, and Urbach energy, ∆E, increased with increasing Pb3O4 filler content. The addition of Pb3O4 nanoparticles increases the solar material protection factor (SMPF) from 99.89 to 99.99%. Thermogravimetric analysis revealed that Pb3O4/PVC nanocomposites have high thermal stability rather than pure PVC film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Sterky, H. Jacobsen, I. Jakubowicz, N. Yarahmadi, T. Hjertberg, Eur. Polym. J 46, 1203–1209 (2010)

    Article  Google Scholar 

  2. N.N. Bhiwankar, R.A. Weiss, Polymer 47, 6684–6691 (2006)

    Article  Google Scholar 

  3. A.A. Ebnalwaleda, A. Thabet, Synth. Met. 220, 374–383 (2016)

    Article  Google Scholar 

  4. L.N. Ismail, H. Zulkefle, S.H. Herman, M.R. Mahmood, Adv. Mater. Sci. Eng. 2012 (2012) 5 (Article ID 605673)

  5. K.M. AbdEl-Kader, A.S. Orabi, Polym. Test 21(5), 591–595 (2002)

    Google Scholar 

  6. T. Estabraq, Abdullah, Salma M Hassan, Asama N Naje. Indian journal of pure and applied physics 51, 77 (2013)

    Google Scholar 

  7. S. Kobayashi, K. Mullen, Encyclopedia of Polymeric Nanomaterials (Springer, Heidelberg, 2015) p 1740

    Book  Google Scholar 

  8. W.V. Titow, PVC Plastics; Properties, Processing, and Applications, (Springer, Netherlands, 1990) p 258

    Google Scholar 

  9. W.E. Mahmoud, A.A. Al-Ghamdi, Polym. Compos. 32, 1143 (2011)

    Article  Google Scholar 

  10. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)

    Article  Google Scholar 

  11. C. Brosseau, P. Queffelec, P. Talbot, J. Appl. Phys 89, 4532 (2001)

    Article  Google Scholar 

  12. I.S. Elashmawi, N.A. Hakeem, L.K. Marei, F.F. Hanna, Physica B 405, 4163–4169 (2010)

    Article  Google Scholar 

  13. O.A. Al-Hartomy, F. Al-Salamy, A.A. Al-Ghamdi, M. Abdel Fatah, N. Dishovsky, F. El-Tantawy, J. Appl. Polym. Sci. 120, 3628–3634 (2011)

    Article  Google Scholar 

  14. A.M. El Sayed, W.M. Morse, Polym. Compos. 34(12), 2031–2039 (2013).

    Article  Google Scholar 

  15. A. Hassena, S. El-Sayed, W.M. Morsic, A.M. El Sayed, Journal of Advances in Physics 4(3), 571–584 (2014)

    Google Scholar 

  16. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, (W.H. Freeman, San Franciso, 1963), p.124

    Google Scholar 

  17. N.S. Allen, M. Edge, M. Rodriguez, C.M. Liauw, E. Fontan, Polym. Degrad. Stab. 68, 363 (2000)

    Article  Google Scholar 

  18. S. Giuffrida, G.G. Condorelli, L.L. Costanzo, G. Ventimiglia, A.D. Mauro, I. L. Fragal, J. Photochem. Photobiol. A Chem. 195, 215 (2008)

    Article  Google Scholar 

  19. S.H. Mortazavi, M. Ghoranneviss, S. Faryadras, J. Fusion Energ 31, 211 (2012)

    Article  Google Scholar 

  20. F. El-Diasty, M. Abdel-Baki, A.F. Abdel-Wahab, Opt. Quant. Electron. 48, 273 (2016)

    Article  Google Scholar 

  21. M.A. Khashan, A.M. El-Naggar, Opt. Commun 174, 445–453 (2000)

    Article  Google Scholar 

  22. T.A. Taha, Y.S. Rammah, J. Mater. Sci. 27, 1384–1390 (2016)

    Google Scholar 

  23. S.T. Lim, T.W. Kim, S.G. Hur, S.J. Hwang, H. Park, W. Choi, J.H. Choy, Chem. Phys. Lett. 434, 251–255 (2007)

    Article  Google Scholar 

  24. W.E. Mahmoud, A.A. Al-Ghamdi, F. Al-Agel, Polym. Adv. Technol. 22, 2055, (2011)

    Article  Google Scholar 

  25. W.E. Mahmoud, W. Shirbeeny, A.A. Al-Ghamdi, S. AlHeniti, J. Appl. Polym. Sci. 125, 339 (2012)

    Article  Google Scholar 

  26. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  27. O. Abdullah, Eur. Sci. J. 10, (2014) 406–417

    Google Scholar 

  28. V. Raja, A.K. Sarma, V.V.R. Rao, Mater. Lett. 57, 4678–4683 (2003)

    Article  Google Scholar 

  29. M.J. Tommalieh, A.M. Zihlif, Phys. B 405, 4750–4754 (2010)

    Article  Google Scholar 

  30. T.W. Hagler, K. Pakbaz, K.F. Voss, A.J. Heeger, Phys. Rev. B 44, 8652–8666 (1991)

    Article  Google Scholar 

  31. K. Pichler, D.A. Halliday, D.D.C. Bradley, P.L. Burn, R.H. Friend, A.B. Holmes, J. Phys. Condens. Matter 5, 7155–7172 (1993)

    Article  Google Scholar 

  32. ISO/FDIS 9050:2003(E), Glass in building—determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors, (2003)

  33. ISO 9845–1:1992(E), Solar energy—reference solar spectral irradiance at the ground at different receiving conditions—Part 1: direct normal and hemispherical solar irradiance for air mass 1. 5, (1992)

  34. A.P. Jellea, A. Gustavsena, T. N. Nilsen, T. Jacobsen, Sol. Energy Mater. Sol. Cells 91 (2007) 342–354.

    Article  Google Scholar 

  35. M.N. Radhakrishnan Nair, M.R. Gopinathan Nair, J. Therm. Anal. Calorim. 103, 863–872 (2011)

    Article  Google Scholar 

  36. E. Arkıs, D. Balkose, Polym. Degr. Stab. 88, 46 (2005)

    Article  Google Scholar 

  37. N.M. Ahmed, S.H. Mansour, S.L. Abd-El-Messieh, Mater. Des. 31, 4312–4320 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A. Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci: Mater Electron 28, 12108–12114 (2017). https://doi.org/10.1007/s10854-017-7024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7024-1

Keywords

Navigation