Skip to main content
Log in

Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The optical properties of the solutions of the MDMO-PPV light-emitting polymer were investigated. The maximum mass extinction coefficient values of the solutions of the MDMO-PPV for 6.640 and 3.014 µM were found to be 20.874 and 42.009 L g−1 cm−1, respectively. The absorption band edge values of the solutions of the MDMO-PPV shifted from 2.149 to 1.987 eV with increasing molarity. To obtain lower Eg values (2.020, 2.057, 2.083, 2.088 and 2.103 eV, respectively) of the MDMO-PPV can be preferred xylene, toluene, chlorobenzene, chloroform and tetrahydrofuran solvents, respectively. The E g of the solution of the MDMO-PPV was decreased with molarities and solvents. The refractive index values of the MDMO-PPV were controlled with various solvents. The optical parameters such as single oscillator energy, dispersion energy, M −1, M −3 moments, optical oscillator strengths, linear static refractive index, optical linear susceptibility, third-order nonlinear susceptibility and nonlinear refractive index were calculated using Wemple–DiDomenico equation. The highest contrast was obtained with xylene, while the lowest contrast was obtained with chlorobenzene. The MDMO-PPV can be used in the fabrication of the metal–semiconductor contacts due to low optical band gap and suitable optical parameters. Also, the surface morphology properties of the MDMO-PPV polymer film were investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Díaz Espinoza MS, Poblete VH, Bernede JC, Cattin L, Godoy A, Díaz Alzamora FR, Gaumer N (2013) Synthesis and optical behavior of PLED devices based on (PMMA)/(PAA)/Er(AP)6Cl3 complex and N, N′-didodecyl-3,4,9,10-perylene tetracarboxylic diimide composites. Polym Bull 70(10):2801–2814

    Google Scholar 

  2. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117

    CAS  Google Scholar 

  3. Yildiz HB, Kiralp S, Toppare L, Yilmaz F, Yagci Y, Ito K, Senyo T (2005) Conducting copolymers of 3-methylthienyl methacrylate and p-vinylbenzyloxy poly(ethyleneoxide) and their electrochromic properties. Polym Bull 53:193–201

    CAS  Google Scholar 

  4. Gunduz B, Yahia IS, Yakuphanoglu F (2012) Electrical and photoconductivity prop-erties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: comparisonstudy. Microelectron Eng 98:41–57

    CAS  Google Scholar 

  5. Ellahi M, Liu F, Song P, Gao Y, Cao H, Rafique MY, Khaskheli MA, Iqbal MZ, Yang H (2013) Influence of the multi-functional epoxy monomers structure on the electro-optical properties and morphology of polymer-dispersed liquid crystal films. Polym Bull 70(11):2967–2980

    CAS  Google Scholar 

  6. Zehetmeyer G, Scheibel JM, Soares RMD, Weibel DE, Oviedo MAS, Oliveira RVB (2013) Morphological, optical, and barrier properties of PP/MMT nanocomposites. Polym Bull 70(8):2181–2191

    CAS  Google Scholar 

  7. Yakuphanoglu F, Gunduz B (2012) Effects of channel widths, thicknesses of active layer on the electrical and photosensing properties of the 6,13-bis(triisopropylsilylethynyl) pentacene transistors by thermal evaporation method: comparison study. Synth Met 162:1210–1239

    CAS  Google Scholar 

  8. Hoppe H, Sariciftci NS (2008) Polymer Solar Cells. Adv Polym Sci. 214:1–86

    CAS  Google Scholar 

  9. Saxena K, Kumar P, Jain VK (2011) Studies on the fluorescence properties of conjugated polymer poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene in presence of nitrogen dioxide gas. Synth Met 161:369–372

    CAS  Google Scholar 

  10. Vishnumurthy KA, Sunitha MS, Adhikari AV (2013) Synthesis and characterization of thiophene-based donor–acceptor type polyimide and polyazomethines for optical limiting applications. Polym Bull 70(1):147–169

    CAS  Google Scholar 

  11. Gizli N (2011) Morphological characterization of cellulose acetate based reverse osmosis membranes by Atomic Force Microscopy (FM) effect of evaporation time. Chem Chem Technol 5(3):327–331

    Google Scholar 

  12. Nicolescu FA, Jerca VV, Vuluga DM, Vasilescu DS (2010) Synthesis and characterization of side-chain poly(methacrylate)s bearing new azo-moieties. Polym Bull 65:905–916

    CAS  Google Scholar 

  13. Goldys EM, Shi JJ (1998) Linear and nonlinear intersubband optical absorption in a strained double barrier quantum well. Phys Status Solidi B 210:237–248

    CAS  Google Scholar 

  14. Palewicz M, Iwan A, Doskocz J, Strek W, Sek D, Kaczmarczyk B, Mazurek B (2011) Optical and structural study of thin film of polyazomethine with triphenylamine unit prepared via spin-coating method. Polym Bull 66:65–76

    CAS  Google Scholar 

  15. Baghramyan HM, Barseghyan MG, Kirakosyan AA, Restrepo RL, Duque CA (2013) Linear and nonlinear optical absorption coefficients in GaAs/Ga1xAlxAs concentric double quantum rings: effects of hydrostatic pressure and aluminum concentration. J Lumin 134:594–599

    CAS  Google Scholar 

  16. Kazarinov RF, Suris RA (1971) Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond 5:707–709

    Google Scholar 

  17. Miller DAB (1990) Quantum-well optoelectronic switching devices. Int J High Speed Electron Syst 1:19–46

    Google Scholar 

  18. Hood TH (1988) Multiple quantum well (MQW) waveguide modulators. J Lightwave Technol 6:743–757

    Google Scholar 

  19. Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298

    CAS  PubMed  Google Scholar 

  20. Beer A (1852) Determination of the absorption of red light in colored liquids. Ann Phys 86:78–88

    Google Scholar 

  21. Zakerhamidi MS, Ghanadzadeh A, Moghadam M (2012) Solvent effects on the UV/visible absorption spectra of some aminoazobenzene dyes. Chem Sci Trans. 1(1):1–8

    CAS  Google Scholar 

  22. Catalán J, Catalán JP (2011) On the solvatochromism of the n↔π* electronic transitions in ketones. Phys Chem Chem Phys 13:4072–4082

    PubMed  Google Scholar 

  23. Nesheva DD, Vateva E, Levi Z, Arsova D (2007) Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: an atomic force microscopy study. Journal of Physics and Chemisrty of Solids 68:675–680

    CAS  Google Scholar 

  24. Quist PAC, Martens T, Mancab JV, Savenije TJ, Siebbeles LDA (2006) Photo-induced charge separation and electron diffusion in MDMO-PPV:PCBM bulk heterojunctions. Sol Energy Mater Sol Cells 90:362–378

    CAS  Google Scholar 

  25. Omer BM (2013) Optical properties of MDMO-PPV and MDMO-PPV/[6,6]-phenyl C61-butyric acid 3-ethylthiophene ester thin films. Int J Organic Electron IJOE 2(2):1–7

    Google Scholar 

  26. Veenstra SC, Verhees WJH, Kroon JM, Koetse MM, Sweelssen J, Bastiaansen JJAM, Schoo HFM, Yang X, Alexeev A, Loos J, Schubert US, Wienk MM (2004) Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV. Chem Mater 16:2503–2508

    CAS  Google Scholar 

  27. Kim S, Ryu S (2010) Efficiency of flexible organic solar cells as a function of post-annealing temperatures. Curr Appl Phys 10:e181–e184

    Google Scholar 

  28. Saxena K, Kumar P, Jain VK (2010) Fluorescence quenching studies of conjugated polymer poly[2-methoxy-5-(30,70-dimethyloctyloxy)-1,4-phenylenevinylene in the presence of TNT. J Lumin 130:2260–2264

    CAS  Google Scholar 

  29. Kumar A, Singh S, Mudahar GS, Thind KS (2006) Molar extinction coefficients of some commonly used solvents. Radiat Phys Chem 75:737–740

    CAS  Google Scholar 

  30. Jiang KJ, Xia JB, Masaki N, Noda S, Yanagida S (2008) Efficient sensitization of nanocrystalline TiO2 films with high molar extinction coefficient ruthenium complex. Inorg Chim Acta 361:783–785

    CAS  Google Scholar 

  31. Zhang H, Fan J, Iqbal Z, Kuang DB, Wang L, Meier H, Cao D (2013) Novel dithieno[3,2-b:20,30-d]pyrrole-based organic dyes with high molar extinction coefficient for dye-sensitized solar cells. Org Electron 14:2071–2081

    CAS  Google Scholar 

  32. Nunes JK, Ertas M, Du L, DeSimone JM (2010) Hierarchical control of polymer composite nano- and micro-structure with lithography. Chem Mater 22:4069–4075

    CAS  Google Scholar 

  33. Saber O (2012) Improvement of optical properties and thermal stability of poly vinyl alcohol using salicylic acid confined in nanohybrid material. Polym Bull 68:209–222

    CAS  Google Scholar 

  34. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8–10:569–585

    Google Scholar 

  35. Stenzel O (2005) The physics of thin film optical spectra: an introduction. Springer-Verlag, Berlin Heidelberg, Germany

    Google Scholar 

  36. Abdolmaleki A, Mohamadi Z, Rezaei B, Askarpour N (2013) Synthesis of small-band gap poly(3,4-ethylenedioxythiophene methine)s using acidic ionic liquids as catalyst. Polym Bull 70:665–679

    CAS  Google Scholar 

  37. Lee S, Jeong I, Kim HP, Hwang SY, Kim TJ, Kim YD, Jang J, Kim J (2013) Effect of incidence angle and polarization on the optimized layer structure of organic solar cells. Sol Energy Mater Sol Cells 118:9–17

    CAS  Google Scholar 

  38. Abeles F (1972) Optical properties of solids. North-Holland Publishing Company, London, Amsterdam

    Google Scholar 

  39. Turan N, Kaya E, Gündüz B, Çolak N, Körkoca H (2012) Synthesis, characterization of poly(E)-3-amino-4-((3-bromophenyl)diazenyl)-1H-pyrazol-5-ol: investigation of antibacterial activity, fluorescence, and optical properties. Fibers and Polymers 13(4):415–424

    CAS  Google Scholar 

  40. Kaya E, Turan N, Gündüz B, Çolak N, Körkoca H (2012) Synthesis, characterization of poly-2- (2-hydroxybenzylideneamino)-6-phenyl-4,5,6, 7-tetrahydrobenzo[b]thiophene-3-carbonitrile: investigation of antibacterial activity and optical properties. Polym Eng Sci 52(7):1581–1589

    CAS  Google Scholar 

  41. Leguijt C, Lok Igen P, Eikelboom JA, Weeper AW, Schuurmans FM, Sinke WC, Alkemade PFA, Sarro PM, Maree CHM, Verhoef LA (1996) Low temperature surface passivation for silicon solar cells. Sol Energy Mater Sol Cells 40:297–345

    CAS  Google Scholar 

  42. Gündüz B (2013) Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film. Opt Mater 36:425–436

    Google Scholar 

  43. Todorov R, Paneva A, Petkov K (2010) Optical characterization of thin chalcogenide films by multiple-angle-of-incidence ellipsometry. Thin Solid Films 518:3280–3288

    CAS  Google Scholar 

  44. Cusano A, Iadicicco A, Paladino D, Campopiano S, Cutolo A, Giordano M (2007) Micro-structured fiber Bragg gratings. Part II: towards advanced photonic devices. Optical Fiber Technology 13:291–301

    CAS  Google Scholar 

  45. Adachi S (1999) Optical constants of crystalline and amorphous semiconductors. Kluwer Academic Publishers

  46. Purniawan A, Pandraud G, Moh TSY, Marthen A, Vakalopoulos KA, French PJ, Sarro PM (2012) Fabrication and optical measurements of a TiO2-ALD evanescent waveguide sensor. Sensors and Actuators A 188:127–132

    CAS  Google Scholar 

  47. Divya S, Nampoori VPN, Radhakrishnan P, Mujeeb A (2014) Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite e A comparison between semi empirical relation and Z-Scan results. Curr Appl Phys 14:93–98

    Google Scholar 

  48. Mitschke U, Bäuerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471–1507

    CAS  Google Scholar 

  49. Shamshad AK, Al-Hazmi FS, Al-Heniti S, Faidah AS, Al-Ghamdi AA (2010) Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr Appl Phys 10:145–152

    Google Scholar 

  50. Mousavi H (2012) Optical conductivity of carbon nanotubes. Optics Communications 285:3137–3139

    CAS  Google Scholar 

  51. Bouarissa N, Gueddim A, Siddiqui SA, Boucenna M, Al-Hajry A (2014) First-principles study of dielectric properties and optical conductivity of Cd1-xMnxTe. Superlattices Microstruct 72:319–324

    CAS  Google Scholar 

  52. Abd El-Raheem MM (2007) Optical properties of GeSeTl thin films. J Phys: Condens Matter 19(21):216209–216215

    Google Scholar 

  53. Girisun TCS, Dhanuskodi S (2009) Linear and nonlinear optical properties of tristhiourea zinc sulphate single crystals. Cryst Res Technol 44:1297–1302

    CAS  Google Scholar 

  54. Mohammed KI, Jasim FM, Azawe MI (2014) Influence of thickness and crystalline structure on thermal and optical properties of ZnO thin films. Curr Appl Phys 14:1318–1324

    Google Scholar 

  55. Xue SW, Zu XT, Zhou WL, Deng HX, Xiang X, Zhang L, Deng H (2008) Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448:21–26

    CAS  Google Scholar 

  56. Oubaha M, Elmaghrum S, Copperwhite R, Corcoran B, McDonagh C, Gorin A (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34:1366–1370

    CAS  Google Scholar 

  57. Kohoutek T, Orava J, Sawada T, Fudouzi H (2011) Inverse opal photonic crystal of chalcogenide glass by solution processing. J Colloid Interface Sci 353:454–458

    CAS  PubMed  Google Scholar 

  58. Ho WF, Uddin MA, Chan HP (2009) The stability of high refractive index polymer materials for high-density planar optical circuits. Polym Degrad Stab 94:158–161

    CAS  Google Scholar 

  59. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romcevic N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloy Compd 507:557–562

    CAS  Google Scholar 

  60. Al-Ghamdi AA, Shamshad AK, Al-Heniti S, Al-Agel FA, Zulfequar M (2011) Annealing and laser irradiation effects on optical constants of Ga15Se85 and Ga15Se83In2 chalcogenide thin films. Curr Appl Phys 11:315–320

    Google Scholar 

  61. El-Nahass MM, Sallam MM, Abd Al-Wahab AHS (2009) Optical and photoelectric properties of TlInS2 layered single crystals. Curr Appl Phys 9:311–316

    Google Scholar 

  62. Wemple SH, DiDomenico M (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23:1156–1160

    CAS  Google Scholar 

  63. Wemple SH, DiDomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3:1338–1351

    Google Scholar 

  64. El-Nahass MM, El-Gohary Z, Soliman HS (2003) Structural and optical studies of thermally evaporated CoPc thin films. Opt Laser Technol 35:523–531

    CAS  Google Scholar 

  65. Ali AI, Son JY, Ammar AH, Abdel Moez A, Kim YS (2013) Optical and dielectric results of Y0.225Sr0.775CoO3±δ thin films studied by spectroscopic ellipsometry technique. Results in Physics 3:167–172

    Google Scholar 

  66. Kurt A (2010) Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films. Turk J Chem 34:67–79

    CAS  Google Scholar 

  67. Atyia HE (2006) Influence of deposition temperature on the structural and optical properties of InSbSe3 films. J Optoelectron Adv Mater 8:1359–1366

    CAS  Google Scholar 

  68. Kurt A, Demirelli K (2010) A study on the optical properties of three-armed polystyrene and poly(styrene-b-isobutyl methacrylate). Polym Eng Sci 2:268–277

    Google Scholar 

  69. Tintu R, Saurav K, Sulakshna K, Nampoori VPN, Radhakrishnan P, Sheenu T (2010) Ge28Se60Sb12/PVA composite films for photonic applications. J. Non-oxide Glasses 2(4):167–174

    Google Scholar 

  70. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2):381–386

    CAS  Google Scholar 

  71. Shanshan S, Janesha D, Craig BA (2010) Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films. Opt Express 18(6):5472–5480

    Google Scholar 

  72. Charles CW (1970) Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2:2045–2048

    Google Scholar 

  73. Buruiana LI, Avram E, Popa A, Musteata VE, Ioan S (2012) Electrical conductivity and optical properties of a new quaternized polysulfone. Polym Bull 68:1641–1661

    CAS  Google Scholar 

  74. Ward HC (1982) Profile characterization rough surfaces. Longman, London

    Google Scholar 

  75. Kumar BR, Rao TS (2012) AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest J Nanomater Biostruct 7(4):1881–1889

    Google Scholar 

  76. Kolanek K, Tallarida M, Karavaev K, Schmeisser D (2010) İn situ studies of the atomic layer deposition of thin HfO2 dielectrics by ultra high vacuum atomic force microscope. Thin Solid Films 518:4688–4691

    CAS  Google Scholar 

  77. Noureddine T, Polycarpou AA (2004) Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribol Int 37:491–505

    Google Scholar 

  78. Liu X, Chetwynd G, Gardner JW (1998) Surface characterization of electro-active thin polymeric film bearings. Int J Machine Tools Manuf 38(5–6):669–675

    Google Scholar 

Download references

Acknowledgments

This work was supported by The Management Unit of Scientific Research Projects of Muş Alparslan University (MUSBAP) under Project 0001. The author is grateful to Mrs. Hilal Gözler who is R&D Scientist and Nanomagnetic Instruments Co. because of helping with the AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayram Gündüz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündüz, B. Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym. Bull. 72, 3241–3267 (2015). https://doi.org/10.1007/s00289-015-1464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1464-7

Keywords

Navigation