Skip to main content
Log in

Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polymer nanocomposite films based on poly(vinyl alcohol) (PVA) containing copper sulfide nanoparticles (CuS) were prepared using in situ chemical reduction and casting techniques. The synthesized nanocomposites were analyzed using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope, and ultraviolet–visible spectroscopy. The XRD pattern reveals that the CuS nanoparticles incorporated in the PVA showed a crystalline nature. The observed FTIR band shifts indicate the intermolecular interaction between the CuS nanoparticles and the PVA matrix. The absorbance of nanocomposite samples increased with increasing CuS concentration. The optical band gap energy was estimated using Tauc’s formula and it decreased with increasing dopant concentration. The conductivity and dielectric behavior of the samples were studied over the frequency range of 300 Hz to 1 MHz in the temperature range of 30–110°C. The ac conductivity was found to increase with the increase of dopant concentration as well as frequency. Moreover, the variation of frequency exponent (s) indicated that the conduction mechanism was the correlated barrier hopping model. The experimental results reveal that the optical and electrical performance of PVA can be enhanced dramatically by the addition of a small amount of CuS nanoparticles. This improved properties of the PVA/CuS nanocomposite suggest uses in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bulinski, V. Kuncser, C. Plapcianu, S. Krautwald, H. Franke, P. Rotaru, and G. Filoti, J. Phys. D Appl. Phys. 37, 2437 (2004).

    Article  Google Scholar 

  2. OGh Abdullah and S.A. Hussen, Adv. Mater. Res. 383, 3257 (2012).

    Google Scholar 

  3. S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Compos. B 39, 933 (2008).

    Article  Google Scholar 

  4. S.F. Bdewi, OGh Abdullah, B.K. Aziz, and A.A.R. Mutar, J. Inorg. Organomet. Polym. Mater. 26, 326 (2016).

    Article  Google Scholar 

  5. S.R. Chauhan and S. Thakur, Mater. Des. 51, 398 (2013).

    Article  Google Scholar 

  6. J. Xu, X. Cui, J. Zhang, H. Liang, H. Wang, and J. Li, Bull. Mater. Sci. 31, 189 (2008).

    Article  Google Scholar 

  7. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, and A. Sharma, Mater. Chem. Phys. 139, 802 (2013).

    Article  Google Scholar 

  8. J. Guan, J. Peng, and X. Jin, Anal. Methods 7, 5454 (2015).

    Article  Google Scholar 

  9. Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin, and J. Yu, J. Mater. Chem. A 3, 13913 (2015).

    Article  Google Scholar 

  10. Y. Kim and D. Walsh, Nanoscale 2, 240 (2010).

    Article  Google Scholar 

  11. S. Yu, J. Liu, W. Zhu, Z.T. Hu, T.-T. Lim, and X. Yan, Sci. Rep. 5, 16369 (2015).

    Article  Google Scholar 

  12. L. Zhang, Y. Li, Z. Jin, J.C. Yu, and K.M. Chan, Nanoscale 7, 12614 (2015).

    Article  Google Scholar 

  13. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K.C.W. Wu, and J.P. Hill, Chem. Lett. 43, 36 (2014).

    Article  Google Scholar 

  14. K. Ariga, Q. Ji, W. Nakanishi, and J.P. Hill, J. Inorg. Organomet. Polym. 25, 466 (2015).

    Article  Google Scholar 

  15. Y. Ni, F. Wang, H. Liu, Q. Zuo, Z. Xu, J. Hong, and X. Ma, Chin. J. Inorg. Chem. 19, 1197 (2003).

    Google Scholar 

  16. H. Wang, X. Lu, Y. Zhao, and C. Wang, Mater. Lett. 60, 2480 (2006).

    Article  Google Scholar 

  17. H. Wang, J.R. Zhang, X.N. Zhao, S. Xu, and J.J. Zhu, Mater. Lett. 55, 253 (2002).

    Article  Google Scholar 

  18. H. Xu, W. Wang, and W. Zhu, Mater. Lett. 60, 2203 (2006).

    Article  Google Scholar 

  19. X. Dong, D. Potter, and C. Erkey, Ind. Eng. Chem. Res. 41, 4489 (2002).

    Article  Google Scholar 

  20. Y. He and K. Li, J. Colloid Interface Sci. 306, 296 (2007).

    Article  Google Scholar 

  21. Y. Ni, H. Liu, F. Wang, G. Yin, J. Hong, X. Ma, and Z. Xu, Appl. Phys. A 79, 2007 (2004).

    Article  Google Scholar 

  22. X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang, and J.J. Zhu, J. Cryst. Growth 252, 593 (2003).

    Article  Google Scholar 

  23. H. Ji, J. Cao, J. Feng, X. Chang, X. Ma, J. Liu, and M. Zheng, Mater. Lett. 59, 3169 (2005).

    Article  Google Scholar 

  24. P. Roy and S.K. Srivastava, Mater. Lett. 61, 1693 (2007).

    Article  Google Scholar 

  25. T.H. Larsen, M. Sigman, A. Ghezelbash, R.C. Doty, and B.A. Korgel, J. Am. Chem. Soc. 125, 5638 (2003).

    Article  Google Scholar 

  26. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, and Siddaramaiah, J. Alloys Compd. 551, 531 (2013).

    Article  Google Scholar 

  27. P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, A.K. Vishwanath, B.K. Das, and C.V.V. Satyanarayana, Mater. Chem. Phys. 92, 229 (2015).

    Article  Google Scholar 

  28. S. Sarma and P. Datta, Nanosci. Nanotechnol. Lett. 2, 261 (2010).

    Article  Google Scholar 

  29. R.P. Chahal, S. Mahendia, A.K. Tomar, and S. Kumar, J. Alloys Compd. 538, 212 (2012).

    Article  Google Scholar 

  30. K. Tezuka, W.C. Sheets, R. Kurihara, Y.J. Shan, H. Imoto, T.J. Marks, and K.R. Poeppelmeier, Solid State Sci. 9, 95 (2007).

    Article  Google Scholar 

  31. C. Deng, X. Ge, H. Hu, L. Yao, C. Han, and D. Zhao, Cryst. Eng. Comm. 16, 2738 (2014).

    Article  Google Scholar 

  32. Z. Li, L. Mi, W. Chen, H. Hou, C. Liu, H. Wang, Z. Zheng, and C. Shen, Cryst. Eng. Comm. 14, 3965 (2012).

    Article  Google Scholar 

  33. M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahira, and N. Mahmood, Cryst. Eng. Comm. 16, 5290 (2014).

    Article  Google Scholar 

  34. R.V. Kumar, O. Palchik, Y. Koltypin, Y. Diamant, and A. Gedanken, Ultrason. Sonochem. 9, 65 (2009).

    Article  Google Scholar 

  35. OGh Abdullah, D.A. Tahir, and K. Kadir, J. Mater. Sci.: Mater. Electron. 26, 6939 (2015).

    Google Scholar 

  36. OGh Abdullah, Y.A.K. Salman, and S.A. Saleem, Phys. Mater. Chem. 3, 18 (2015).

    Google Scholar 

  37. Z. Ali, H. Youssef, and T. Afify, Polym. Compos. 29, 1119 (2008).

    Article  Google Scholar 

  38. OGh Abdullah, Y.A.K. Salman, and S.A. Saleem, J. Mater. Sci.: Mater. Electron. 27, 3591 (2016).

    Google Scholar 

  39. A.U. Ubale, K.S. Chipade, M.V. Bhute, P.P. Raut, G.P. Malpe, Y.S. Sakhare, and M.R. Belkhedkar, Int. J. Mater. Chem. 2, 165 (2012).

    Google Scholar 

  40. X. Liu, Q. Ren, F. Fu, R. Zou, Q. Wang, G. Xin, Z. Xiao, X. Huang, Q. Liu, and J. Hu, Dalton Trans. 44, 10343 (2015).

    Article  Google Scholar 

  41. Y. Du, Z. Yin, J. Zhu, X. Huang, X.J. Wu, Z. Zeng, Q. Yan, and H. Zhang, Nat. Commun. 3, 1177 (2012).

    Article  Google Scholar 

  42. A.A. Ziabari and F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249 (2012).

    Article  Google Scholar 

  43. M. Madani, Curr. Appl. Phys. 11, 70 (2011).

    Article  Google Scholar 

  44. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 1st ed. (Oxford: Oxford University Press, 1979), p. 34.

    Google Scholar 

  45. X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).

    Article  Google Scholar 

  46. OGh Abdullah, S.B. Aziz, K.M. Omer, and Y.M. Salih, J. Mater. Sci.: Mater. Electron. 26, 5303 (2015).

    Google Scholar 

  47. U. Baishya and D. Sarkar, Bull. Mater. Sci. 34, 1285 (2011).

    Article  Google Scholar 

  48. A. Hassen, A.M. El Sayed, W.M. Morsi, and S. El-Sayed, J. Appl. Phys. 112, 093525 (2012).

    Article  Google Scholar 

  49. O. Nakhaei, N. Shahtahmassebi, M. Rezaeeroknabadi, and M.M.B. Mohagheghi, Sci. Iran. F 19, 1979 (2012).

    Article  Google Scholar 

  50. M. Ghanipour and D. Dorranian, J. Nanomater. 2013, 1 (2013). doi:10.1155/2013/897043.

  51. H.M. Zidan, J. Appl. Polym. Sci. 88, 104 (2003).

    Article  Google Scholar 

  52. S.A. Sbeih and A.M. Zihlif, J. Phys. D Appl. Phys. 24, 145405 (2009).

    Article  Google Scholar 

  53. J.C. Dyre and T.B. Schroder, Rev. Mod. Phys. 72, 873 (2000).

    Article  Google Scholar 

  54. G.C. Psarras, J. Polym. Sci. Part B: Polym. Phys. 45, 2535 (2007).

    Article  Google Scholar 

  55. G.C. Psarras, Compos. Part A: Appl. Sci. Manuf. 37, 1545 (2006).

    Article  Google Scholar 

  56. K. Ulutas, D. Deger, and S. Yakut, J. Phys. Conf. Ser. 417, 012040 (2013).

    Article  Google Scholar 

  57. J. Yang, X.J. Meng, M.R. Shen, L. Fang, J.L. Wang, T. Lin, J.L. Sun, and J.H. Chu, J. Appl. Phys. 104, 104113 (2008).

    Article  Google Scholar 

  58. A.K. Jonscher, J. Mater. Sci. 13, 553 (1978).

    Article  Google Scholar 

  59. S.B. Aziz and Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280 (2014).

    Article  Google Scholar 

  60. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, Curr. Appl. Phys. 9, 165 (2009).

    Article  Google Scholar 

  61. V. Raja, A.K. Sharma, and V.V.R.N. Rao, Mater. Lett. 58, 3242 (2004).

    Article  Google Scholar 

  62. T. Blythe and D. Bloor, Electrical Properties of Polymers, 2nd ed. (Cambridge: Cambridge University Press, 2005), p. 48.

    Google Scholar 

  63. D. Nwabunma and T. Kyu, Polyolefin Composites (New York: Wiley, 2008).

    Google Scholar 

  64. M. Trihotri, U.K. Dwivedi, F.H. Khan, M.M. Malik, and M.S. Qureshi, J. Non-Cryst. Solids 421, 1 (2015).

    Article  Google Scholar 

  65. P.K. Khare and S.K. Jain, Bull. Mater. Sci. 23, 17 (2000).

    Article  Google Scholar 

  66. B.G. Soares, M.E. Leyva, G.M.O. Barra, and D. Khastgir, Eur. Polym. J. 42, 676 (2006).

    Article  Google Scholar 

  67. S.A. Mohamed, A.A. Al-Ghamdi, G.D. Sharma, and M.K. El Mansy, J. Adv. Res. 5, 79 (2014).

    Article  Google Scholar 

  68. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, and H.M. Ahmed, J. Mater. Sci.: Mater. Electron. 27, 4163 (2016).

    Google Scholar 

  69. M.T. Ramesan, J. Appl. Polym. Sci. 128, 1540 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors desire to thank the University of Sulaimani, for providing financial support for this research. The authors gratefully acknowledge the Ministry of Science and Technology for the facility in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Saleem, S.A. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films. J. Electron. Mater. 45, 5910–5920 (2016). https://doi.org/10.1007/s11664-016-4797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4797-6

Keywords

Navigation