Skip to main content
Log in

Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline ferrite samples having matrix Ni1−xZnxFe2O4 (x = 0.0, 0.1, 0.3, 0.5 and 0.7) synthesized by low- temperature self-combustion route using a complexing agent commercial bovine gelatin without any heat treatment. The morphological, magnetic, structural, and dielectrical properties of NiZnFe2O4/C nanocomposite have been analyzed. Those XRD analyses of the prepared ferrite samples illustrated pure single cubic spinel structure. The XRD parameters, viz average crystal size, lattice parameter, and density were deduced from XRD data. FTIR spectra revealed two conspicuous absorption bands, the higher band at tetrahedral (A) site and the lower band in octahedral (B) site. FE-SEM image for sample with x = 0.5 confirmed the appearance of carbon, also TEM image confirmed the nano-sized particles that agglomerated due to magneto-static interaction between particles and showed carbon dots with average size of 5 nm. The electron diffraction of selected area demonstrated the formation of single cubic spinel structure in consentient with XRD results. The nanocrystal of composition Ni0.9Zn0.1Fe2O4 has the maximum Ms = 101.09 emu/g as evinced in VSM measurements. The dielectric analysis showed that the dispersion of relative permittivity (ε′) is most extreme for the Ni0.5Zn0.5Fe2O4 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.B. Carter, M.G. Norton, Ceramic Materials: Science and Engineering (Springer, New York, 2007)

    Google Scholar 

  2. M.M. Rashad, D.A. Rayan, M. EL-Gendy, M.M. El Kholy, T.A. Taha, Structural and magnetic characteristics of ferroxplana Co2Y nanoferrites synthesized via two chemical routes. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4674-z

    Article  Google Scholar 

  3. X. He, G. Song, J. Zhu, Non-stoichiometric NiZn ferrite by sol-gel processing. Mater. Lett. 59(14), 1941–1944 (2005)

    Article  CAS  Google Scholar 

  4. M.A. Khan, M.J. ur Rehman, K. Mahmood, I. Ali, M.N. Akhtar, G. Murtaza, et al., Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram. Int. 41(2), 2286–2293 (2015)

    Article  CAS  Google Scholar 

  5. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J. Magn. Magn. Mater. 298(2), 83–94 (2006)

    Article  CAS  Google Scholar 

  6. R. Iyer, R. Desai, R.V. Upadhyay, Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites and their characterizations. Bull. Mater. Sci. 32(2), 141–147 (2009)

    Article  CAS  Google Scholar 

  7. S. Sharma, K. Verma, U. Chaubey, V. Singh, B.R. Mehta, Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. Mater. Sci. Eng. B 167(3), 187–192 (2010)

    Article  CAS  Google Scholar 

  8. G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311(1), 46–50 (2007)

    Article  CAS  Google Scholar 

  9. V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, An investigation of particle size effects in ultrafine barium ferrite. J. Magn. Magn. Mater. 125(1–2), 199–208 (1993)

    Article  CAS  Google Scholar 

  10. V.K. Sankaranarayanan, N.S. Gajbhiye, Low-temperature preparation of ultrafine rare-earth iron garnets. J. Am. Ceram. Soc. 73(5), 1301–3007 (1990)

    Article  CAS  Google Scholar 

  11. A.E. Virden, K. O’Grady, Structure and magnetic properties of NiZn ferrite nanoparticles. J. Magn. Magn. Mater. 290, 868–870 (2005)

    Article  Google Scholar 

  12. K.H. Kim, Y.A. Kim, M. Yamaguchi, Radio frequency characteristics of Fe-filled carbon nanotube film. J. Magn. Magn. Mater. 302(1), 232–236 (2006)

    Article  CAS  Google Scholar 

  13. G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322(8), 1015–1019 (2010)

    Article  CAS  Google Scholar 

  14. M.M. Rashad, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba, A.E. Saba, Structure and magnetic properties of NixZn1–xFe2O4 nanoparticles prepared through co-precipitation method. J. Alloys Compd. 486(1), 759–767 (2009)

    Article  CAS  Google Scholar 

  15. C. Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, C.S. Babu, K.S. Ramakrishna, et al., Structural and magnetic characterization of co-precipitated NixZn1–xFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)

    Article  CAS  Google Scholar 

  16. P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203(2), 348–353 (2010)

    Article  CAS  Google Scholar 

  17. N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322(14), 1999–2005 (2010)

    Article  CAS  Google Scholar 

  18. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009)

    Article  CAS  Google Scholar 

  19. R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloys Compd. 491(1), 372–377 (2010)

    Article  CAS  Google Scholar 

  20. P.P. Hankare, U.B. Sankpal, R.P. Patil, I.S. Mulla, R. Sasikala, A.K. Tripathi, K.M. Garadkar, Synthesis and characterization of nanocrystalline zinc substituted nickel ferrites. J. Alloys Compd. 496(1), 256–260 (2010)

    Article  CAS  Google Scholar 

  21. M.A. Gabal, W.A. Bayoumy, A. Saeed, Y.M. Al Angari, Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via egg-white route. J. Mol. Struct. 1097, 45–51 (2015)

    Article  CAS  Google Scholar 

  22. P. Priyadharsini, A. Pradeep, G. Chandrasekaran, Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. J. Magn. Magn. Mater. 321(12), 1898–1903 (2009)

    Article  CAS  Google Scholar 

  23. M.K. Anupama, B. Rudraswamy, N. Dhananjaya, Investigation on impedance response and dielectric relaxation of Ni-Zn ferrites prepared by self-combustion technique. J. Alloys Compd. 706, 554–561 (2017)

    Article  CAS  Google Scholar 

  24. S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 43(2), 2486–2494 (2017)

    Article  CAS  Google Scholar 

  25. M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1–xZnxFe2O4 ferrite. Physica B 405(2), 507–512 (2010)

    Article  CAS  Google Scholar 

  26. W. Yan, W. Jiang, Q. Zhang, Y. Li, H. Wang, Structure and magnetic properties of nickel–zinc ferrite microspheres synthesized by solvothermal method. Mater. Sci. Eng. B 171(1), 144–148 (2010)

    Article  CAS  Google Scholar 

  27. M. Sajjia, M. Oubaha, T. Prescott, A.G. Olabi, Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J. Alloys Compd. 506(1), 400–406 (2010)

    Article  CAS  Google Scholar 

  28. W.S. Chiu, S. Radiman, R. Abd-Shukor, M.H. Abdullah, P.S. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459(1), 291–297 (2008)

    Article  CAS  Google Scholar 

  29. S.S. Khot, N.S. Shinde, B.P. Ladgaonkar, B.B. Kale, S.C. Watawe, Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv. Appl. Sci. Res. 2(4), 460–471 (2011)

    CAS  Google Scholar 

  30. M. Sinha, H. Dutta, S.K. Pradhan, X-ray characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg–Zn-ferrite at elevated temperatures. Physica E 33(2), 367–369 (2006)

    Article  CAS  Google Scholar 

  31. Z. Wang, Y. Xie, P. Wang, Y. Ma, S. Jin, X. Liu, Microwave anneal effect on magnetic properties of Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method. J. Magn. Magn. Mater. 323(23), 3121–3125 (2011)

    Article  CAS  Google Scholar 

  32. S. El-Rabaie, T.A. Taha, A.A. Higazy, Characterization and growth of lead telluride quantum dots doped novel fluorogermanate glass matrix. Mater. Sci. Semicond. Process. 30, 631–635 (2015)

    Article  CAS  Google Scholar 

  33. S. El-Rabaie, T.A. Taha, A.A. Higazy, Novel PbSe nanocrystals doped fluorogermanate glass matrix. Mater. Sci. Semicond. Process. 34, 88–92 (2015)

    Article  CAS  Google Scholar 

  34. T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124(4), 307 (2018)

    Article  Google Scholar 

  35. S. El-Rabaie, T.A. Taha, A.A. Higazy, Synthesis and characterization of CdS nanocrystals embedded in germanate glasses. Appl. Nanosci. 4(2), 219–226 (2014)

    Article  CAS  Google Scholar 

  36. A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (W.H. Freeman, San Francisco, 1963)

    Google Scholar 

  37. C.N.J. Wagner, Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering). J. Non-Cryst. Solids 31(1–2), 1–40 (1978)

    Article  CAS  Google Scholar 

  38. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, et al., Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)

    Article  CAS  Google Scholar 

  39. M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Structural and electrical studies on La3+ substituted Ni–Zn ferrites. Mater. Chem. Phys. 92(2), 310–321 (2005)

    Article  CAS  Google Scholar 

  40. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloys Compd. 502(1), 231–237 (2010)

    Article  CAS  Google Scholar 

  41. L.K. Leung, B.J. Evans, A.H. Morrish, Low-temperature Mössbauer study of a nickel-zinc ferrite: ZnxNi1–xFe2O4. Phys. Rev. B 8(1), 29 (1973)

    Article  CAS  Google Scholar 

  42. A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43(6), 2018–2025 (2008)

    Article  CAS  Google Scholar 

  43. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324(14), 2258–2264 (2012)

    Article  CAS  Google Scholar 

  44. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)

    Article  CAS  Google Scholar 

  45. K.B. Modi, M.K. Rangolia, M.C. Chhantbar, H.H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)

    Article  CAS  Google Scholar 

  46. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011)

    Article  CAS  Google Scholar 

  47. S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 1089, 25–31 (2015)

    Article  CAS  Google Scholar 

  48. T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36(1), 275–281 (2010)

    Article  CAS  Google Scholar 

  49. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, et al., Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)

    Article  CAS  Google Scholar 

  50. T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol–gel combustion method. Ceram. Int. 39, S239–S243 (2013)

    Article  CAS  Google Scholar 

  51. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322(7), 767–776 (2010)

    Article  Google Scholar 

  52. M.A. Gabal, Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white. J. Magn. Magn. Mater. 321(19), 3144–3148 (2009)

    Article  CAS  Google Scholar 

  53. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486(1), 325–329 (2009)

    Article  CAS  Google Scholar 

  54. I. Ghafoor, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi0.9FeO3 multiferroics. J. Sol-Gel. Sci. Technol. 74(2), 352–356 (2015)

    Article  CAS  Google Scholar 

  55. T.A. Taha, A.A. Azab, AC conductivity and dielectric properties of borotellurite glass. J. Electron. Mater. 45(10), 5170–5177 (2016)

    Article  CAS  Google Scholar 

  56. S.A. Rahman, Temperature, frequency and composition dependence of dielectric properties of Nb substituted Li-ferrites. Egypt. J. Solids 29(1), 131–140 (2006)

    Google Scholar 

  57. C.S. Lakshmi, C.S. Sridhar, G. Govindraj, S. Bangarraju, D.M. Potukuchi, Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites. Physica B 459, 97–104 (2015)

    Article  CAS  Google Scholar 

  58. K.M. Batoo, M.S. Ansari, Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7(1), 112 (2012)‏

    Article  Google Scholar 

  59. Dar M.A., Verma V., Gairola S.P., Siddiqui W.A., Singh R.K., Kotnala R.K. Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258(14), 5342–5347 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Elrabaie, S. & Attia, M.T. Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J Mater Sci: Mater Electron 29, 18493–18501 (2018). https://doi.org/10.1007/s10854-018-9965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9965-4

Navigation