Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth. https://doi.org/10.1002/2016JB013098
Article
Google Scholar
Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center. https://doi.org/10.7289/V5C8276M. Accessed 30 Apr 2019
Anderson JM, Beyerle G, Glaser S, Liu L, Männel B, Nilsson T, Heinkelmann R, Schuh H (2018) Simulations of VLBI observations of a geodetic satellite providing co-location in space. J Geodesy 92:1023–1046. https://doi.org/10.1007/s00190-018-1115-5
Article
Google Scholar
Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geodesy 90(12):1371–1388. https://doi.org/10.1007/s00190-016-0929-2
Article
Google Scholar
Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geodesy 89(8):775–791. https://doi.org/10.1007/s00190-015-0814-4
Article
Google Scholar
Artz T, Bernhard L, Nothnagel A, Steigenberger P, Tesmer S (2012) Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations. J Geodesy 86(3):221–239. https://doi.org/10.1007/s00190-011-0512-9
Article
Google Scholar
Bachmann S, Thaller D, Roggenbuck O, Lösler M, Messerschmitt L (2016) IVS contribution to ITRF2014. J Geodesy 90(7):631–654. https://doi.org/10.1007/s00190-016-0899-4
Article
Google Scholar
Behrend D, Thomas C, Gipson J, Himwich E (2017) Planning of the continuous VLBI Campaign 2017 (CONT17). In: Haas R, Elgered G (eds) Proceedings of the 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, Chalmers University of Technology, Gothenburg, pp 132–135
Bertiger WI, Bar-Sever YE, Christensen EJ, Davis ES, Guinn JR, Haines BJ, Ibanez-Meier RW, Jee JR, Lichten SM, Melbourne WG, Muellerschoen RJ, Munson TN, Vigue Y, Wu SC, Yunck TP, Schutz BE, Abusali PAM, Rim HJ, Watkins MM, Willis P (1994) GPS precise tracking of TOPEX/POSEIDON: results and implications. J Geophys Res Oceans 99(C12):24,449–24,464. https://doi.org/10.1029/94JC01171
Article
Google Scholar
Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367
Google Scholar
Beutler G, Jäggi A, Hugentobler U, Mervart L (2006) Efficient satellite orbit modelling using pseudo-stochastic parameters. J Geodesy 80(7):353–372. https://doi.org/10.1007/s00190-006-0072-6
Article
Google Scholar
Bizouard C, Gambis D (2018) International earth rotation and reference systems service earth orientation parameters EOP (IERS) 14 C04. ftp://hpiers.obspm.fr/iers/eop/eopc04/. Accessed 21 Sep 2019
Bury G, Sośnica K, Zajdel R (2019) Multi-GNSS orbit determination using satellite laser ranging. J Geodesy 93:2447–2463. https://doi.org/10.1007/s00190-018-1143-1
Article
Google Scholar
Chen JL, Wilson CR, Eanes RJ, Nerem RS (1999) Geophysical interpretation of observed geocenter variations. J Geophys Res Solid Earth 104(B2):2683–2690. https://doi.org/10.1029/1998JB900019
Article
Google Scholar
Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res Solid Earth. https://doi.org/10.1029/2008JB005727
Article
Google Scholar
Colombo OL (1989) The dynamics of global positioning system orbits and the determination of precise ephemerides. J Geophys Res Solid Earth 94(B7):9167–9182. https://doi.org/10.1029/JB094iB07p09167
Article
Google Scholar
Couhert A, Mercier F, Moyard J, Biancale R (2018) Systematic error mitigation in DORIS-derived geocenter motion. J Geophys Res Solid Earth 123(11):10,142–10,161. https://doi.org/10.1029/2018JB015453
Article
Google Scholar
Dach R, Schaer Stefan AD, Orliac E, Prange L, Susnik A, Villiger A, Jäggi A (2016) CODE final product series for the IGS. Astronomical Institute, University of Bern, Bern
Google Scholar
Dickey JM (2010) How and why to do VLBI on GPS. In: Behrend D, Baver KD (eds) IVS 2010 general meeting proceedings, international VLBI service for geodesy and astrometry, pp 65–69
Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24:1867–1870. https://doi.org/10.1029/97GL01849
Article
Google Scholar
Duev DA, Calves MG, Pogrebenko SV, Gurvits LI, Cimo G, Bahamon TB (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:A43
Article
Google Scholar
Fey AL, Gordon D, Jacobs CS (eds) (2009) The second realization of the international celestial reference frame by very long baseline interferometry, presented on behalf of the IERS/IVS Working Group. IERS Technical Note 35, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main
Fukushima T (1994) Lunar VLBI observation model. Astron Astrophys 291:320–323
Google Scholar
Fukuzaki Y, Wada K, Kawabata R, Ishimoto M, Wakasugi T (2015) First geodetic result of Ishioka VGOS station. In: Haas R, Colomer F (eds) Proceedings of the 22nd European VLBI group for geodesy and astrometry working meeting, pp 67–70
Gipson J (2010) An introduction to Sked. In: Behrend D, Baver KD (eds) IVS 2010 general meeting proceedings, international VLBI service for geodesy and astrometry, pp 77–84
Haas R, Neidhardt A, Kodet J, Plötz C, Schreiber U, Kronschnabl G, Pogrebenko S, Duev D, Casey S, Marti-Vidal I, Plank L (2014) The Wettzell-Onsala G130128 experiment—VLBI-observations of a GLONASS satellite. In: IVS 2014 general meeting proceedings ‘VGOS: the new VLBI network. International VLBI service for geodesy and astrometry, pp 451–455
Haas R, Halsig S, Han S, Iddink A, Jaron F, La Porta L, Lovell J, Neidhardt A, Nothnagel A, Plötz C, Tang G, Zhang Z (2017) Observing the Chang’E-3 Lander with VLBI (OCEL): technical setups and first results. In: Nothnagel A, Jaron F (eds) Proceedings of the first international workshop on VLBI observations of near-field targets, 5–6 Oct 2016. Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, vol 54. ISSN 1864-1113, Bonn, pp 41–64
Hackel S, Steigenberger P, Hugentobler U, Uhlemann M, Montenbruck O (2015) Galileo orbit determination using combined GNSS and SLR observations. GPS Solut 19(1):15–25. https://doi.org/10.1007/s10291-013-0361-5
Article
Google Scholar
Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geodesy 27(1–2):299–318. https://doi.org/10.1080/01490410490465300
Article
Google Scholar
Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the Global Positioning System. J Geophys Res Solid Earth 120(8):5911–5939. https://doi.org/10.1002/2015JB012225
Article
Google Scholar
Hase H (1999) Phase centre determinations at GPS-satellites with VLBI. In: Schlüter W, Hase H (eds) Proceedings of the 13th European VLBI group for geodesy and astrometry working meeting, pp 273–277
Hellerschmied A, McCallum L, McCallum J, Sun J, Böhm J, Cao J (2018) Observing APOD with the AuScope VLBI array. Sensors. https://doi.org/10.3390/s18051587
Article
Google Scholar
Herring TA (1986) Precision of vertical position estimates from Very Long Baseline Interferometry. J Geophys Res Solid Earth 91(B9):9177–9182. https://doi.org/10.1029/JB091iB09p09177
Article
Google Scholar
Himwich E, Bertarini A, Corey B, Baver KD, Gordon D, La Porta L (2017) Impact of station clocks on UT1-TAI estimates. In: Haas R, Elgered G (eds) Proceedings of the 23rd European VLBI group for geodesy and astrometry working meeting. Chalmers University of Technology, Gothenburg, pp 172–176
Hobiger T, Otsubo T (2014) Combination of GPS and VLBI on the observation level during CONT11—common parameters, ties and inter-technique biases. J Geodesy 88(11):1017–1028. https://doi.org/10.1007/s00190-014-0740-x
Article
Google Scholar
Hobiger T, Otsubo T (2017) Combination of space geodetic techniques on the observation level with c5++: common nuisance parameters and data weighting. In: van Dam T (ed) REFAG 2014. Springer, Cham, pp 31–37
Google Scholar
Hobiger T, Koyama Y, Böhm J, Kondo T, Ichikawa R (2009) The effect of neglecting VLBI reference station clock offsets on UT1 estimates. Adv Space Res 43(6):910–916. https://doi.org/10.1016/j.asr.2008.11.005
Article
Google Scholar
Hobiger T, Otsubo T, Sekido M, Gotoh T, Kubooka T, Takiguchi H (2010) Fully automated VLBI analysis with c5++ for ultra rapid determination of UT1. Earth Planets Space 62(12):933–937. https://doi.org/10.5047/eps.2010.11.008
Article
Google Scholar
Hobiger T, Otsubo T, Sekido M (2014) Observation level combination of SLR and VLBI with c5++: a case study for TIGO. Adv Space Res 53(1):119–129
Article
Google Scholar
Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy 83(12):1145. https://doi.org/10.1007/s00190-009-0333-2
Article
Google Scholar
Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for the GRACE mission using only GPS data. J Geodesy 80(6):322–331. https://doi.org/10.1007/s00190-006-0073-5
Article
Google Scholar
Kareinen N, Klopotek G, Hobiger T, Haas R (2017) Identifying optimal tag-along station locations for improving VLBI intensive sessions. Earth Planets Space 69(16):1–9. https://doi.org/10.1186/s40623-017-0601-y
Article
Google Scholar
Klopotek G, Hobiger T, Haas R (2017) Implementation of VLBI near-field delay models in the c5++ analysis software. In: Nothnagel A, Jaron F (eds) Proceedings of the first international workshop on VLBI observations of near-field targets, 5–6 Oct 2016. Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, vol 54, ISSN 1864-1113, Bonn, pp 29–33
Klopotek G, Hobiger T, Haas R (2018) Geodetic VLBI with an artificial radio source on the Moon: a simulation study. J Geodesy 92(5):457–469. https://doi.org/10.1007/s00190-017-1072-4
Article
Google Scholar
Klopotek G, Hobiger T, Haas R, Jaron F, La Porta L, Nothnagel A, Zhang Z, Han S, Neidhardt A, Plötz C (2019) Position determination of the Chang’e 3 lander with geodetic VLBI. Earth Planets Space 71(1):23. https://doi.org/10.1186/s40623-019-1001-2
Article
Google Scholar
Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geodesy 81(6):515–527. https://doi.org/10.1007/s00190-006-0127-8
Article
Google Scholar
Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073. https://doi.org/10.1002/grl.50288
Article
Google Scholar
Männel B (2016) Co-location of geodetic observation techniques in space. PhD thesis, ETH Zurich, Zürich. https://doi.org/10.3929/ethz-a-010811791
Männel B, Rothacher M (2016) Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS. J Geodesy 90(2):189–203. https://doi.org/10.1007/s00190-015-0865-6
Article
Google Scholar
McCallum J, Plank L, Hellerschmied A, Böhm J, Lovell J (2017) Technical challenges in VLBI observations of GNSS sources. In: Nothnagel A, Jaron F (eds) Proceedings of the first international workshop on VLBI observations of near-field targets, 5–6 Oct 2016. Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, vol 54, ISSN 1864-1113, Bonn, pp 7–10
Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. https://doi.org/10.1016/j.asr.2012.10.026
Article
Google Scholar
Meindl M, Beutler G, Thaller D, Dach R, Schaer S, Jäggi A (2015) A comment on the article “A collinearity diagnosis of the GNSS geocenter determination” by P. Rebischung, Z. Altamimi, and T. Springer. J Geodesy 89(2):189–194. https://doi.org/10.1007/s00190-014-0765-1
Article
Google Scholar
Milani A, Nobili AM, Farinella P (1988) Non-gravitational perturbations and satellite geodesy. Astron Notes 309(1):38–38. https://doi.org/10.1002/asna.2113090108
Article
Google Scholar
Montenbruck O, Garcia-Fernandez M, Yoon Y, Schön S, Jäggi A (2008) Antenna phase center calibration for precise positioning of LEO satellites. GPS Solut 13(1):23. https://doi.org/10.1007/s10291-008-0094-z
Article
Google Scholar
Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced solar radiation pressure modeling for Galileo satellites. J Geodesy 89(3):283–297. https://doi.org/10.1007/s00190-014-0774-0
Article
Google Scholar
Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Stürze A, Weber G, Schmid R, MacLeod K, Schaer S (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697
Article
Google Scholar
Nerem R, Bar-Sever YE, Grasp Team (2011) The geodetic reference antenna in space (GRASP)—a mission to enhance the terrestrial reference frame, pp G51B–04
Niell A, Barrett J, Burns A, Cappallo R, Corey B, Derome M, Eckert C, Elosegui P, McWhirter R, Poirier M, Rajagopalan G, Rogers AEE, Ruszczyk C, SooHoo J, Titus M, Whitney A, Behrend D, Bolotin S, Gipson J, Gordon D, Himwich E, Petrachenko B (2018) Demonstration of a broadband very long baseline interferometer system: a new instrument for high-precision space geodesy. Radio Sci 53(10):1269–1291. https://doi.org/10.1029/2018RS006617
Article
Google Scholar
Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB006579
Article
Google Scholar
Nothnagel A, Schnell D (2008) The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations. J Geodesy 82(12):863–869. https://doi.org/10.1007/s00190-008-0212-2
Article
Google Scholar
Nothnagel A, Artz T, Behrend D, Malkin Z (2017) International VLBI service for geodesy and astrometry—delivering high-quality products and embarking on observations of the next generation. J Geodesy 91(7):711–721. https://doi.org/10.1007/s00190-016-0950-5
Article
Google Scholar
Otsubo T, Kunimori H, Engelkeimier B, Takahashi F (1996) Development of space geodetic technology analysis software: Concerto. J Commun Res Lab 43:23–56
Google Scholar
Otsubo T, Appleby GM, Gibbs P (2001) Glonass laser ranging accuracy with satellite signature effect. Surv Geophys 22(5):509–516. https://doi.org/10.1023/A:1015676419548
Article
Google Scholar
Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68(1):65. https://doi.org/10.1186/s40623-016-0447-8
Article
Google Scholar
Pearlman MR, Noll CE, Pavlis EC, Lemoine FG, Combrink L, Degnan JJ, Kirchner G, Schreiber U (2019) The ILRS: approaching 20 years and planning for the future. J Geodesy 93(11):2161–2180. https://doi.org/10.1007/s00190-019-01241-1
Article
Google Scholar
Petit G, Luzum B (eds) (2010) IERS conventions (2010) IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M
Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system. Progress report of the IVS VLBI2010 committee
Plag HP, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020, 1st edn. Springer, Berlin. https://doi.org/10.1007/978-3-642-02687-4
Plank L (2013) VLBI satellite tracking for the realization of frame ties. PhD thesis, Vienna University of Technology, Vienna. http://katalog.ub.tuwien.ac.at/AC11121594
Plank L, Böhm J, Schuh H (2016) Simulated VLBI satellite tracking of the GNSS constellation: observing strategies. In: Rizos C, Willis P (eds) IAG 150 years. Springer, Cham, pp 85–90
Google Scholar
Plank L, Hellerschmied A, McCallum J, Böhm J, Lovell J (2017) VLBI observations of GNSS-satellites: from scheduling to analysis. J Geodesy 91:1–14
Article
Google Scholar
Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geodesy 79(4):189–195. https://doi.org/10.1007/s00190-005-0456-z
Article
Google Scholar
Riddell AR, King MA, Watson CS, Sun Y, Riva REM, Rietbroek R (2017) Uncertainty in geocenter estimates in the context of ITRF2014. J Geophys Res Solid Earth 122(5):4020–4032. https://doi.org/10.1002/2016JB013698
Article
Google Scholar
Rogers AEE (1970) Very long baseline interferometry with large effective bandwidth for phase-delay measurements. Radio Sci 5(10):1239–1247. https://doi.org/10.1029/RS005i010p01239
Article
Google Scholar
Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson AH, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical reference systems. Springer, Heidelberg, pp 81–90
Chapter
Google Scholar
Rothacher M, Angermann D, Artz T, Bosch W, Drewes H, Gerstl M, Kelm R, König D, König R, Meisel B, Müller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer S, Tesmer V, Thaller D (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J Geodesy 85(10):679–705. https://doi.org/10.1007/s00190-011-0475-x
Article
Google Scholar
Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geodesy 77(7):440–446. https://doi.org/10.1007/s00190-003-0339-0
Article
Google Scholar
Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geodesy 81(12):781–798. https://doi.org/10.1007/s00190-007-0148-y
Article
Google Scholar
Sekido M, Fukushima T (2006) A VLBI delay model for radio sources at a finite distance. J Geodesy 80(3):137–149. https://doi.org/10.1007/s00190-006-0035-y
Article
Google Scholar
Sekido M, Kondo T, Kawai E, Imae M (2003) Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data. Radio Sci. https://doi.org/10.1029/2000RS002620
Article
Google Scholar
Seybold JS (2005) Introduction to RF propagation. Wiley, Hoboken. https://doi.org/10.1002/0471743690
Book
Google Scholar
Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geodesy 88(8):789–804. https://doi.org/10.1007/s00190-014-0722-z
Article
Google Scholar
Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geodesy 89(7):725–743. https://doi.org/10.1007/s00190-015-0810-8
Article
Google Scholar
Sośnica K, Bury G, Zajdel R, Strugarek D, Drożdżewski M, Kaźmierski K (2019) Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth Planets Space 71(1):20. https://doi.org/10.1186/s40623-019-1000-3
Article
Google Scholar
Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62. https://doi.org/10.1007/PL00012757
Article
Google Scholar
Steigenberger P, Thoelert S, Montenbruck O (2018) GNSS satellite transmit power and its impact on orbit determination. J Geodesy 92(6):609–624. https://doi.org/10.1007/s00190-017-1082-2
Article
Google Scholar
Sun J, Tang G, Shu F, Li X, Liu S, Cao J, Hellerschmied A, Böhm J, McCallum L, McCallum J, Lovell J, Haas R, Neidhardt A, Lu W, Han S, Ren T, Chen L, Wang M, Ping J (2018) VLBI observations to the APOD satellite. Adv Space Res 61(3):823–829. https://doi.org/10.1016/j.asr.2017.10.046
Article
Google Scholar
Takahashi F, Kondo T, Takahashi Y, Koyama Y (2000) Very long baseline interferometer. Wave summit course. Ohmsha Ltd, Tokyo
Google Scholar
Tange O (2011) GNU parallel—the command-line power tool.;login. USENIX Mag 36(1):42–47. https://doi.org/10.5281/zenodo.16303
Article
Google Scholar
Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Rizos C, Willis P (eds) Earth Edge Sci Sustain Planet. Springer, Heidelberg, pp 129–134
Chapter
Google Scholar
Thompson AR, Moran JM, Swenson GW (2017) Interferometry and synthesis in radio astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-44431-4
Book
Google Scholar
Tornatore V, Haas R, Casey S, Duev D, Pogrebenko S, Calvés GM (2014) Direct VLBI observations of global navigation satellite system signals. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. Springer, Heidelberg, pp 247–252
Chapter
Google Scholar
Whitney A, Lonsdale C, Himwich E, Vandenberg N, van Langevelde H, Mujunen A, Walker C (2002) VEX file definition/example. http://www.vlbi.org/vex/docs/vex%20definition%2015b1.pdf, technical report 1.5b1
Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. https://doi.org/10.1016/j.jog.2012.01.007
Article
Google Scholar
Wu X, Kusche J, Landerer FW (2017) A new unified approach to determine geocentre motion using space geodetic and grace gravity data. Geophys J Int 209(3):1398–1402. https://doi.org/10.1093/gji/ggx086
Article
Google Scholar
Yoo AB, Jette MA, Grondona M (2003) SLURM: simple linux utility for resource management. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job Schedul Strateg Parallel Process. Springer, Berlin, pp 44–60
Chapter
Google Scholar
Zheng W, Huang Y, Chen Z, Wang GW, Liu Q, Tong F, Li P (2014) Realtime and high-accuracy VLBI in the CE-3 Mission. In: IVS 2014 general meeting proceedings ‘VGOS: the new VLBI network’. International VLBI Service for Geodesy and Astrometry, pp 466–472