Skip to main content
Log in

Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The development and numerical values of the new absolute phase-center correction model for GPS receiver and satellite antennas, as adopted by the International GNSS (global navigation satellite systems) Service, are presented. Fixing absolute receiver antenna phase-center corrections to robot-based calibrations, the GeoForschungsZentrum Potsdam (GFZ) and the Technische Universität München reprocessed more than 10 years of GPS data in order to generate a consistent set of nadir-dependent phase-center variations (PCVs) and offsets in the z-direction pointing toward the Earth for all GPS satellites in orbit during that period. The agreement between the two solutions estimated by independent software packages is better than 1 mm for the PCVs and about 4 cm for the z-offsets. In addition, the long time-series facilitates the study of correlations of the satellite antenna corrections with several other parameters such as the global terrestrial scale or the orientation of the orbital planes with respect to the Sun. Finally, completely reprocessed GPS solutions using different phase-center correction models demonstrate the benefits from switching from relative to absolute antenna phase-center corrections. For example, tropospheric zenith delay biases between GPS and very long baseline interferometry (VLBI), as well as the drift of the terrestrial scale, are reduced and the GPS orbit consistency is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10): 2214. doi: 10.1029/2001JB000561

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res (submitted)

  • Bar-Sever Y (1995) A new model for GPS yaw attitude. In: Gendt G, Dick G (eds) Proc 1995 IGS Workshop, Potsdam, pp 128–140

  • Berg H (1948) Allgemeine Meteorologie—Einführung in die Physik der Atmosphäre. Ferdinand Dümmlers Verlag, Bonn

    Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service (IGS): theory and initial results. Manuscr Geod 19(6): 367–386

    Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111(B2):B02406. doi: 10.1029/2005JB003629

    Article  Google Scholar 

  • Braun J, Stephens B, Ruud O, Meertens C (1997) The effect of antenna covers on GPS baseline solutions. UNAVCO report, University NAVSTAR Consortium, Boulder (available at http://facility. unavco. org/ science_tech/ dev_test/ publications/ dome_report/ domeX5Freport-1.html)

  • Czopek FM, Shollenberger S (1993) Description and performance of the GPS Block I and II L-Band antenna and link budget. In: Proc ION-GPS93, The Institute of Navigation, Salt Lake City, pp 37–43

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern

  • Dow JM, Neilan RE, Gendt G (2005) The International GPS Service (IGS): Celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326. doi: 10.1016/j.asr.2005.05.125

    Article  Google Scholar 

  • Ferland R (2003) IGS00(v2) final. IGSMAIL-4666. IGS Central Bureau, Pasadena

    Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311. doi: 10.1029/2005GL024342

    Article  Google Scholar 

  • Ge M, Gendt G (2005a) Estimation and validation of IGS absolute antenna phase center variations. In: Meindl M (ed) Proc 2004 IGS Workshop and Symposium, Bern

  • Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005b) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32(6):L06310. doi: 10.1029/2004GL022224

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP (2005c) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110. doi: 10.1007/s00190-005-0447-0

    Article  Google Scholar 

  • Gendt G (2006) IGS switch to absolute antenna model and ITRF2005 IGSMAIL-5438. IGS Central Bureau, Pasadena

    Google Scholar 

  • Gendt G, Dick G, Söhne W (1999) GFZ Analysis Center of IGS—Annual Report 1998. In: Gowey K, Neilan R, Moore A (eds) 1998 IGS Technical Reports. IGS Central Bureau, Pasadena, pp 79–87

    Google Scholar 

  • Görres B, Campbell J, Becker M, Siemes M (2006) Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Sol 10(2):136–145. doi: 10.1007/s10291-005-0015-3

    Article  Google Scholar 

  • Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1–2):299–318. doi: 10.1080/01490410490465300

    Article  Google Scholar 

  • Hefty J, Rothacher M, Springer T, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily resolution gained at the CODE processing center of the IGS. J Geod 74(6): 479–487. doi: 10.1007/s001900000108

    Article  Google Scholar 

  • Hugentobler U, Ineichen D, Beutler G (2003) GPS satellites: radiation pressure, attitude and resonance. Adv Space Res 31(8):1917–1926. doi: 10.1016/S0273-1177(03)00174-1

    Article  Google Scholar 

  • Kouba J (2003) A guide to using International GPS Service (IGS) products. IGS Central Bureau, Pasadena (available at http://igscb. jpl. nasa. gov/ igscb/ resource/ pubs/ GuidetoUsingIGSProducts.pdf)

  • Luzum BJ, Ray JR, Carter MS, Josties FJ (2001) Recent improvements to IERS Bulletin A combination and prediction. GPS Sol 4(3):34–40. doi:10.1007/PL00012853

    Article  Google Scholar 

  • Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Sol 3(1):50–58. doi: 10.1007/PL00012780

    Article  Google Scholar 

  • Mader GL, Czopek FM (2002) The Block IIA satellite—Calibrating antenna phase centers. GPS World 13(5):40–46

    Google Scholar 

  • Marquis W, Reigh D (2005) On-orbit performance of the improved GPS Block IIR antenna panel. In: Proc ION-GNSS05, Long Beach, pp 2418–2426

  • Menge F (2003) Zur Kalibrierung der Phasenzentrumsvariationen von GPS-Antennen für die hochpräzise Positionsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, vol 247, pp 1–198

  • Menge F, Seeber G, Voelksen C, Wuebbena G, Schmitz M (1998) Results of absolute field calibration of GPS antenna PCV. In: Proc ION-GPS98, Nashville, pp 31–38

  • Montenbruck O, Gill E (2000) Satellite orbits: models, methods, applications. Springer, Berlin

    Google Scholar 

  • Navstar GPS Joint Program Office (2004) Navstar GPS space segment/navigation user interfaces (IS-GPS-200, Revision D). Interface specification, El Segundo (available at http://gps. afspc. af. mil/ gpsoc/ gps_documentation.htm)

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246. doi: 10.1029/95JB03048

    Article  Google Scholar 

  • Niell A (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space 52(10):699–702

    Google Scholar 

  • Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5):189–195. doi: 10.1007/s00190-005-0456-z

    Article  Google Scholar 

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Sol 8(4):251–266. doi: 10.1007/s10291-004-0110-x

    Article  Google Scholar 

  • Ray J, Crump D, Chin M (2007) New global positioning system reference station in Brazil. GPS Sol 11(1):1–10. doi: 10.1007/s10291-006-0032-x

    Article  Google Scholar 

  • Rothacher M (2001) Comparison of absolute and relative antenna phase center variations. GPS Sol 4(4):55–60. doi: 10.1007/PL00012867

    Article  Google Scholar 

  • Rothacher M, Mader G (2003). Receiver and satellite antenna phase center offsets and variations. In: Tetreault P, Neilan R, Gowey K (eds) Proc 2002 IGS Network. Data and Analysis Centre Workshop, Ottawa, pp 141–152

    Google Scholar 

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107: 13–34. doi: 10.1007/BF02522083

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19(15):3483–3517. doi: 10.1175/JCLI3812.1

    Article  Google Scholar 

  • Schmid R (2006) igs05_1390.atx—New release of the absolute IGS antenna correction file. IGSMAIL-5400, IGS Central Bureau, Pasadena

  • Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8): 440–446. doi: 10.1007/s00190-003-0339-0

    Article  Google Scholar 

  • Schmid R, Mader G, Herring T (2005a) From relative to absolute antenna phase center corrections. In: Meindl M (ed) Proc 2004 IGS Workshop and Symposium, Bern, pp 209–219

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005b) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Sol 9(4):283–293. doi: 10.1007/s10291-005-0134-x

    Article  Google Scholar 

  • Schöne T (2004). TIGA—Tide gauge benchmark monitoring pilot project. In: Gowey K, Neilan R, Moore A (eds) IGS 2001-2002 Technical Reports. IGS Central Bureau, Pasadena, pp 225–230

    Google Scholar 

  • Schupler BR, Allshouse RL, Clark TA (1994) Signal characteristics of GPS user antennas. J Inst Navigation 41: 277–295

    Google Scholar 

  • Springer TA (2000a) Modeling and validating orbits and clocks using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, 60, Swiss Geodetic Commission

  • Springer TA (2000b) Common interests of the IGS and the IVS. In: Vandenberg NR, Baver KD (eds) Proc 2000 IVS General Meeting, Kötzting, pp 296–305

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B5): B05402. doi: 10.1029/2005JB003747

    Article  Google Scholar 

  • Steigenberger P, Romero I, Fang P (2007) Reprocessing issues, standardization, new models. In: Proc 2006 IGS Workshop, Darmstadt (in press)

  • Tesmer V, Kutterer H, Drewes H (2004) Simultaneous estimation of a TRF, the EOP and a CRF. In: Vandenberg NR, Baver KD (eds) Proc 2004 IVS General Meeting, Ottawa, pp 311–314

  • Thaller D, Dill R, Krügel M, Steigenberger P, Rothacher M, Tesmer V (2006) CONT02 analysis and combination of long EOP series. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 389–411

    Chapter  Google Scholar 

  • Thomas CC, MacMillan DS (2003) CORE operation center report. In: Vandenberg NR, Baver KD (eds) IVS 2002 Annual Report, NASA/TP-2003-211619, Goddard Space Flight Center, Greenbelt

  • Zhang FP, Gendt G, Wuensch J, Ge M, van Dam T (2005) Impact of atmospheric pressure loading on the stability of reference frame and vertical motion rate derived by GPS. Geophys Res Abstr 7, 01077

    Google Scholar 

  • Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76:668–672. doi: 10.1007/s00190-002-0294-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, R., Steigenberger, P., Gendt, G. et al. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81, 781–798 (2007). https://doi.org/10.1007/s00190-007-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0148-y

Keywords

Navigation