Skip to main content

Advertisement

Log in

Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://ilrs.gsfc.nasa.gov/science/analysisCenters/index.html.

  2. http://ilrs.gsfc.nasa.gov/network/system_performance/index.html.

  3. We are grateful to Erricos Pavlis, Mikang Cheng and the CSR team for making available the latest GRACE-based geopotential models to the ILRS analysis centres for their ITRF2014 re-analysis efforts.

  4. http://ilrs.dgfi.tum.de/index.php?id=6.

  5. http://ilrs.gsfc.nasa.gov/network/site_information/CofM_correction_overview.html.

  6. http://ilrs.gsfc.nasa.gov/network/site_information/index.html.

  7. http://ilrs.dgfi.tum.de/data_handling/ILRS_Data_Handling_File.snx.

References

  • Abbondanza C, Altamimi Z, Chin TM, Gross RS, Heflin MB, Parker JW, Wu X (2015) Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J Geodesy 89:313–329

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473

    Article  Google Scholar 

  • Angermann D, Müller H (2009) On the strength of SLR observations to realize the scale and origin of the terrestrial reference system. In: Sideris MG (eds) Observing our changing earth, Vol 133 of International association of geodesy symposia, Springer, Berlin, Heidelberg pp 21–29

  • Appleby G (1995) Centre of mass corrections for LAGEOS and Etalon for single-photon ranging systems. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 18–26

  • Appleby G, Gibbs P (1995) Energy dependent range biases for single-photon-detection systems. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 51–59

  • Appleby GM (1992) Satellite signatures in SLR observations. In: 8th International workshop on laser ranging instrumentation, Annapolis, USA

  • Appleby GM, Otsubo T (2013) Centre-of-mass values for precise analysis of LAGEOS, Etalon and Ajisai 1980–2013. In: 18th International workshop on laser ranging, Fujiyoshida, Japan

  • Appleby G, Wilkinson M, Luceri V, Gibbs P, Smith V (2008) Attempts to separate apparent observational range bias from true geodetic signals. In: Proceedings of the 16th international workshop on laser ranging, Poznan, Poland

  • Appleby GM (1997) Satellite laser ranging and the Etalon geodetic satellites. PhD diss, Aston University, Birmingham, UK

  • Appleby GM, Gibbs P, Sherwood RA, Wood R (1999) Achieving and maintaining subcentimeter accuracy for the Herstmonceux single-photon SLR facility, In: Proceedings of SPIE vol 3865, pp 52–63

  • Appleby GM, Smith V, Wilkinson M, Ziebart M, Williams SD (2010) Comparison of height anomalies determined from SLR, absolute gravimetry and GPS with high frequency borehole data at Herstmonceux. In: Mertikas SP (ed) Gravity, geoid and earth observation, Vol 135 of International Association of Geodesy Symposia, Springer, pp 107–113

  • AWG, SLRF (2008) http://ilrs.gsfc.nasa.gov/science/awg/SLRF2008.html. Accessed 26 June 2016

  • Bloßfeld M, Seitz M, Angermann D (2013) Non-linear station motions in epoch and multi-year reference frames. J Geodesy 88(1):45–63

    Article  Google Scholar 

  • Bloßfeld M, Štefka V, Müller H, Gerstl M (2015) Satellite laser ranging: a tool to realise GGOS? In: International association of geodesy symposia, Springer, Berlin, Heidelberg, pp 1–7

  • Clarke CB, Degnan JJ, McGarry JR, Pavlis EC (2013) Processing single photon data for maximum range accuracy. In: 18th International workshop on laser ranging, Fujiyoshida, Japan

  • Coulot D, Berio P, Laurain O, Féraudy D, Exertier P (2006) An original approach to compute satellite laser ranging biases. In: Proceedings of the 15th international workshop on laser ranging, Canberra, Australia

  • Coulot D, Berio P, Bonnefond P, Exertier P, Féraudy D, Laurain O, Deleflie F (2009) Satellite laser ranging biases and terrestrial reference frame scale factor. In: Sideris MG (ed) Observing our changing earth, International association of geodesy symposia, Springer, Berlin, Heidelberg, Vol 133 pp 39–46

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res Oceans 107(C11):7–1713, 3186

    Article  Google Scholar 

  • Dunn P, Torrence M, Kolenkiewicz R, Smith D (1999) Earth scale defined by modern satellite ranging observations. Geophys Res Lett 26(10):1489–1492

    Article  Google Scholar 

  • Fitzmaurice MW, Minott PO, Abshire JB, Rowe HE (1977) Prelaunch testing of the laser geodynamics satellite (LAGEOS), Technical Report 1062, NASA Technical Paper

  • Gibbs P, Sinclair A (1994) Investigation of a small range-dependent bias of two Stanford SR620 time interval counters. In: 9th International workshop on laser ranging instrumentation, Canberra, Australia, pp 274–276

  • Gibbs P, Appleby GM, Potter C (2006) A reassessment of laser ranging accuracy at SGF Herstmonceux, UK. In: Proceedings of the 15th international workshop on laser ranging, Canberra, Australia

  • Husson V (2003) Absolute and relative range bias detection capabilities. In: Noomen R, Klosko S, Noll C, Pearlman M (eds) Proceedings from the 13th international workshop on laser ranging instrumentation, Washington DC, USA, NASA/CP-2003-212248

  • Husson VS, Ries JC, Eanes RJ, Horvath JE (2003) Millimeter QC of the ITRF using SLR. In: AGU fall meeting abstracts

  • IERS (2016) IERS Mean Pole. http://hpiers.obspm.fr/eoppc/eop/eopc01/mean-pole.tab. Accessed 26 June 2016

  • Kirchner G, Koidl F (1992) Work at Graz on satellite signatures. In: 8th International workshop on laser ranging instrumentation, Annapolis, U.S

  • Kucharski D, Kirchner G, Otsubo T, Koidl F (2015) A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy: a case study with Ajisai. Earth Planet Space 67(1):1

    Article  Google Scholar 

  • Luceri V, Bianco G (2008) The MLRO range bias problem analysis and solution, Technical report. http://ilrs.gsfc.nasa.gov/docs/ASI.2008.07.04.1.pdf. Accessed 26 June 2016

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Let 31:L14602. doi:10.1029/2004GL020308

  • Minott PO, Zagwodzki T, Selden M (1993) Prelaunch optical characterization of the laser geodynamics satellite (LAGEOS 2), Technical Report TP-3400, NASA Technical Paper

  • Otsubo T, Appleby G (2005) Centre-of-mass correction issues: towards mm-ranging accuracy. In: Garate J, Davila JM, Noll C, Pearlman M (eds) Proceedings of the 14th international laser ranging workshop, San Fernando, Spain: Boletin ROA No. 5, Ministerio de Defensa, Real Instituto y Observatorio de la Armada, pp 467–471

  • Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res Solid Earth 108(B4):2201. doi:10.1029/2002JB002209

  • Otsubo T, Matsuo K, Appleby G, Sherwood R, Neubert R (2014) Scale parameters of the earth sensitive to the optical response of spherical SLR targets. In: AOGS 11th annual meeting, Sapporo, Japan

  • Otsubo T, Sherwood R, Appleby G, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geodesy 89(4):303–312

    Article  Google Scholar 

  • Pavlis EC (2002) Dynamical determination of origin and scale in the earth system from satellite laser ranging. In: Ádám J, Schwarz K-P (eds) Vistas for Geodesy in the New Millennium, Vol 125 of International association of geodesy symposia, Springer, pp 36–41

  • Pavlis EC, Luceri V (2013) Analysis report. In: Noll C, Pearlman M (eds) International laser ranging service 2009–2010 report, NASA/TP 2013-217507, pp 6–164

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Technical Note ; 36, Technical report, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. 3-89888-989-6. http://tai.bipm.org/iers/conv2010/conv2010.html. Accessed 26 June 2016

  • Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer. ISBN 978-3-642-02687-4

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910

    Article  Google Scholar 

  • Ries JC, Eanes RJ, Huang C, Schutz BE, Shum CK, Tapley BD, Watkins MM, Yuan DN (1989) Determination of the gravitational coefficient of the earth from near-earth satellites. Geophys Res Lett 16(4):271–274

    Article  Google Scholar 

  • Ries JC, Eanes RJ, Shum CK, Watkins MM (1992) Progress in the determination of the gravitational coefficient of the earth. Geophys Res Lett 19(6):529–531

    Article  Google Scholar 

  • Schillak S, Michalek P (2006) Monitoring the international terrestrial reference frame 2000 by satellite laser ranging in 1993–2003. In: Brzeziński A, Capitaine N, Kolaczek B (eds) Journées 2005-systèmes de référence spatio-temporels, 70

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geodesy 86(12):1097–1123

    Article  Google Scholar 

  • Sinclair AT, Appleby GM (1988) SATAN: programs for determination and analysis of satellite orbits from SLR data, SLR Technical Note 8. Royal Greenwich Observatory, Cambridge

  • Sinclair AT (1995) The LAGEOS centre of mass correction for different detection techniques. In: Proceedings of annual eurolas meeting, Munich, Germany, pp 31–36

  • Smith DE, Kolenkiewicz R, Dunn PJ, Torrence MH (2000) Earth scale below a part per billion from satellite laser ranging. In: Klaus-Peter Schwarz (ed) Geodesy Beyond 2000, Vol 121 of International association of geodesy symposia. Springer, pp 3–12. ISBN 978-3-642-64105-3

  • Sośnica K, Rodríguez-Solano CJ, Thaller D, Jäggi A, Dach R, Beutler G (2013) Impact of Earth radiation pressure on LAGEOS orbits and on the global scale. In: 18th International workshop on laser ranging, Fujiyoshida, Japan

  • Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geodesy 88(8):789–804

    Article  Google Scholar 

  • Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015a) Satellite laser ranging to GPS and GLONASS. J Geodesy 89:725–743

    Article  Google Scholar 

  • Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015b) Time variable earths gravity field from SLR satellites. J Geodesy 89(10):945–960

    Article  Google Scholar 

  • Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geodesy 85(5):257–272

    Article  Google Scholar 

  • United Nations General Assembly (2015) UN resolution on global geodetic reference frame for sustainable development. http://un-ggim-europe.org. Accessed 26 June 2016

  • Van Dam T, Ray R (2010) S1 and S2 atmospheric tide loading effects for geodetic applications. Updated October 2010. http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html. Data set accessed January 2015

  • Zhu SY, Massmann FH, Reigber C (2001) The effect of the geocentric gravitational constant on scale. Scientific technical report, GeoForschungsZentrum Potsdam, Potsdam

  • Zhu SY, Massmann FH, Yu Y, Reigber C (2002) Gravity model induced systematic errors in reference frames. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium, Vol 125 of International association of geodesy symposia, Springer, pp 15–17

Download references

Acknowledgments

The authors wish to acknowledge the ILRS for providing the data, and in particular the stations of the network for their sustained tracking efforts over many years. We thank the anonymous referees for their in-depth assessments and many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Appleby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appleby, G., Rodríguez, J. & Altamimi, Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90, 1371–1388 (2016). https://doi.org/10.1007/s00190-016-0929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0929-2

Keywords

Navigation