Skip to main content

Advertisement

Log in

Exploring the deformation potential of composite materials processed by incremental sheet forming: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Over the past two decades, incremental sheet forming (ISF) has advanced the development of flexible sheet metal forming, especially for small-to-medium volume and customized production. To be suitable for various applications, researchers have explored the deformation potential of different materials, such as metals, polymers, composites, and so forth. For these materials, ISF-formed shapes and performances of the final components including formability, geometric accuracy, surface roughness, strength, and fatigue, etc. have been extensively assessed via analytical, numerical, and experimental approaches. This review article attempts to summarize the composite materials that are recognized and processed by ISF so far. Besides, deformation and failure mechanisms and constitutive equations used to describe their mechanical behaviors during ISF are discussed as well. The presented summary is aimed at aiding the ISF researchers in designing and manufacturing composite material components with desirable shapes and performances while providing a reference for future material characterizations related to sheet forming research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data Availability

All data and materials are included in this article.

Code availability

No code is involved in this article.

Abbreviations

ISF:

Incremental sheet forming

SPIF:

Single-point incremental forming

TPIF:

Two-point incremental forming

DSIF:

Double-sided incremental forming

AISF:

Asymmetric incremental sheet forming

FSIF:

Friction stir incremental forming

ADSIF:

Accumulative double-sided incremental forming

Al:

Aluminum

Mg:

Magnesium

St:

Steel

Cu:

Copper or cuprum

FGM:

Functionally graded material

Ti:

Titanium

RVE:

Representative volume element

PP:

Polypropylene

FML:

Fiber metal laminate

ST:

Santoprene

PVC:

Polyvinyl chloride

SiCp:

Silicon carbide particles

PMMA:

Polymethyl methacrylate

f-MWCNTs:

Functionalized multi-wall carbon nanotubes

PLA:

Poly lactic acid

PA:

Polyamide

BFRP:

Basalt fiber–reinforced thermoplastic polymer

CFRP:

Carbon fiber–reinforced plastics

GFRP:

Glass fiber–reinforced plastics

FSTWB:

Friction stir tailor welded blank

FLD:

Forming limit diagrams

FFL:

Fracture forming line

FGBIT:

Fractal geometry–based incremental toolpath

SEM:

Scanning electron microscope

References

  1. Liu Z, Li Y, Meehan PA (2013) Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies. Mater Manuf Process 28:562–571. https://doi.org/10.1080/10426914.2013.763964

    Article  Google Scholar 

  2. Verbert J, Behera AK, Lauwers B, Duflou JR (2011) Multivariate adaptive regression splines as a tool to improve the accuracy of parts produced by FSPIF. Key Eng Mater 473:841–846. https://doi.org/10.4028/www.scientific.net/KEM.473.841

    Article  Google Scholar 

  3. Liu Z, Daniel WJT, Li Y, Liu S, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Technol 214:620–634. https://doi.org/10.1016/j.jmatprotec.2013.11.010

    Article  Google Scholar 

  4. Liu Z, Li Y, Meehan PA (2014) Tool path strategies and deformation analysis in multi-pass incremental sheet forming process. Int J Adv Manuf Technol 75:395–409. https://doi.org/10.1007/s00170-014-6143-6

    Article  Google Scholar 

  5. Lu H, Kearney M, Wang C, Liu S, Meehan PA (2017) Part accuracy improvement in two point incremental forming with a partial die using a model predictive control algorithm. Precis Eng 49:179–188. https://doi.org/10.1016/j.precisioneng.2017.02.006

    Article  Google Scholar 

  6. Ebrahimzadeh P, Baseri H, Mirnia MJ (2018) Formability of aluminum 5083 friction stir welded blank in two-point incremental forming process. P I Mech Eng E-J Pro 232:267–280. https://doi.org/10.1177/0954408917692370

    Article  Google Scholar 

  7. Mostafanezhad H, Menghari HG, Esmaeili S, Shirkharkolaee EM (2018) Optimization of two-point incremental forming process of AA1050 through response surface methodology. Measurement 127:21–28. https://doi.org/10.1016/j.measurement.2018.04.042

    Article  Google Scholar 

  8. Ou L, An Z, Gao Z, Zhou S, Men Z (2020) Effects of process parameters on the thickness uniformity in two-point incremental forming (TPIF) with a positive die for an irregular stepped part. Mater 13. https://doi.org/10.3390/ma13112634

  9. Li X, Han K, Xu P, Wang H, Li D, Li Y, Li Q (2020) Experimental and theoretical analysis of the thickness distribution in multistage two point incremental sheet forming. Int J Adv Manuf Technol 107:191–203. https://doi.org/10.1007/s00170-020-05037-y

    Article  Google Scholar 

  10. Zhu H, Ou H, Popov A (2020) Incremental sheet forming of thermoplastics: a review. Int J Adv Manuf Technol 111:565–587. https://doi.org/10.1007/s00170-020-06056-5

    Article  Google Scholar 

  11. Zhu H, Xiao D, Kang J (2019) Research on point-pressing based double-sided CNC incremental forming. J Mech Sci Technol 33:4389–4400. https://doi.org/10.1007/s12206-019-0835-7

    Article  Google Scholar 

  12. Zhu H, Xiao D, Kang J (2019) Research on the double-sided incremental forming toolpath planning and generation based on STL model. Int J Adv Manuf Technol 102:839–856. https://doi.org/10.1007/s00170-018-03221-9

    Article  Google Scholar 

  13. Moser N, Zhang Z, Ren H, Zhang H, Shi Y, Ndip-Agbor EE, Lu B, Chen J, Ehmann KF, Cao J (2016) Effective forming strategy for double-sided incremental forming considering in-plane curvature and tool direction. CIRP Ann 65:265–268. https://doi.org/10.1016/j.cirp.2016.04.131

    Article  Google Scholar 

  14. Zhang H, Zhang Z, Ren H, Cao J, Chen J (2018) Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. Int J Mech Sci 144:216–222. https://doi.org/10.1016/j.ijmecsci.2018.06.002

    Article  Google Scholar 

  15. Valoppi B, Sánchez Egea AJ, Zhang Z, González Rojas HA, Ghiotti A, Bruschi S, Cao J (2016) A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy. CIRP Ann 65:309–312. https://doi.org/10.1016/j.cirp.2016.04.135

    Article  Google Scholar 

  16. Ndip-Agbor E, Ehmann K, Cao J (2018) Automated flexible forming strategy for geometries with multiple features in double sided incremental forming. J Manuf Sci E- T ASME 140

  17. Leszak E (1967) Apparatus and process for incremental dieless forming. USA Patent 3342051A

  18. Hagan E, Jeswiet J (2003) A review of conventional and modern single-point sheet metal forming methods. P I Mech Eng B-J Eng 217:213–225. https://doi.org/10.1243/095440503321148858

    Article  Google Scholar 

  19. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54:88–114. https://doi.org/10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  20. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210:981–997. https://doi.org/10.1016/j.jmatprotec.2010.02.014

    Article  Google Scholar 

  21. Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Processes 27:37–62. https://doi.org/10.1016/j.jmapro.2017.03.014

    Article  Google Scholar 

  22. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G (2017) A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol 92:2439–2462. https://doi.org/10.1007/s00170-017-0251-z

    Article  Google Scholar 

  23. Gatea S, Ou H, Mccartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87:479–499. https://doi.org/10.1007/s00170-016-8426-6

    Article  Google Scholar 

  24. Lu H, Liu H, Wang C (2019) Review on strategies for geometric accuracy improvement in incremental sheet forming. Int J Adv Manuf Technol 102:3381–3417. https://doi.org/10.1007/s00170-019-03348-3

    Article  Google Scholar 

  25. Ai S, Long H (2019) Review on material fracture mechanism in incremental sheet forming. Int J Adv Manuf Technol 104:33–61. https://doi.org/10.1007/s00170-019-03682-6

    Article  Google Scholar 

  26. Liu Z (2018) Heat-assisted incremental sheet forming: a state-of-the-art review. Int J Adv Manuf Technol 98:2987–3003. https://doi.org/10.1007/s00170-018-2470-3

    Article  Google Scholar 

  27. Peng W, Ou H, Becker A (2019) Double-sided incremental forming: a review. J Manuf Sci E- T ASME 5

  28. Brent Strong A, Hauwiller PB (1989) Incremental forming of large thermoplastic composites. J Thermoplast Compos 2:122–132. https://doi.org/10.1177/089270578900200204

    Article  Google Scholar 

  29. Hauwiler PB, Strong B (1991) Incremental forming of thermoplastic composites. USA Patent 5026514

  30. Neugebauer R, Meinel S, Glaß R, Popp M (2010) Characterization of contact tensions during incremental forming of metal composites. Int J Mater Form 3:667–670. https://doi.org/10.1007/s12289-010-0858-1

    Article  Google Scholar 

  31. Fiorotto M, Sorgente M, Lucchetta G (2010) Preliminary studies on single point incremental forming for composite materials. Int J Mater Form 3:951–954. https://doi.org/10.1007/s12289-010-0926-6

    Article  Google Scholar 

  32. Hernández ávila M, Lozano Sánchez LM, Perales Martínez IA, Elías Zúñiga A, Bagudanch I, GarcíaRomeu ML, Elizalde LE, Barrera EV (2018) Single point incremental forming of bilayer sheets made of two different thermoplastics. J Appl Polym Sci 136:47093. https://doi.org/10.1002/app.47093

    Article  Google Scholar 

  33. Galdos L, Sáenz De Argandoña E, Otegi N, Ortubay R (2012) Incremental forming of sandwich materials. Key Eng Mater 504–506:931–936. https://doi.org/10.4028/www.scientific.net/KEM.504-506.931

    Article  Google Scholar 

  34. Bykov AA (2011) Bimetal production and applications. Steel Transl 41:778–786. https://doi.org/10.3103/S096709121109004X

    Article  Google Scholar 

  35. Parsa MH, Yamaguchi K, Takakura N (2001) Redrawing analysis of aluminum–stainless-steel laminated sheet using fem simulations and experiments. Int J Mech Sci 43:2331–2347. https://doi.org/10.1016/S0020-7403(01)00038-8

    Article  MATH  Google Scholar 

  36. Sedighi M, Honarpisheh M (2012) Investigation of cold rolling influence on near surface residual stress distribution in explosive welded multilayer. Strength Mater 44:693–698. https://doi.org/10.1007/s11223-012-9424-z

    Article  Google Scholar 

  37. Taleb Araghi B, Göttmann A, Bambach M, Hirt G, Bergweiler G, Diettrich J, Steiners M, Saeed-Akbari A (2011) Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production. Prod Eng 5:393–404. https://doi.org/10.1007/s11740-011-0325-y

    Article  Google Scholar 

  38. Abd Ali R, Chen W, Jin K, Bao Y, Hussein AW (2019) Formability and failure analyses of Al/SUS bilayer sheet in single point incremental forming. Int J Adv Manuf Technol 105:2785–2798. https://doi.org/10.1007/s00170-019-04470-y

    Article  Google Scholar 

  39. Abd Ali R, Chen W, Al-Furjan MSH, Jin X, Wang Z (2019) Experimental investigation and optimal prediction of maximum forming angle and surface roughness of an Al/SUS bimetal sheet in an incremental forming process using machine learning. Mater 12:4150. https://doi.org/10.3390/ma12244150

    Article  Google Scholar 

  40. Ghassabi M, Salimi M, Haghpanahi M (2018) Simulation of incremental forming processes of a pyramidal ring made of two materials. Mech Ind 19:313. https://doi.org/10.1051/meca/2018025

    Article  Google Scholar 

  41. Wu R, Li M, Hu Q, Cai S, Wang Z, Chen J (2019) Evaluation and simulation on deformation instability mechanism in laminated sheet incremental forming. Procedia Manufacturing 29:36–44. https://doi.org/10.1016/j.promfg.2019.02.103

    Article  Google Scholar 

  42. Li M, Wu R, Cai S, Chang Z, Wang Z, Chen J (2020) Experimental investigation on friction-stir-assisted incremental forming with synchronous bonding of aluminum alloy and steel sheets. J Mater Eng Perform 29:750–759. https://doi.org/10.1007/s11665-020-04600-8

    Article  Google Scholar 

  43. Liu Z, Li G (2019) Single point incremental forming of Cu-Al composite sheets: a comprehensive study on deformation behaviors. Arch Civ Mech Eng 19:484–502. https://doi.org/10.1016/j.acme.2018.11.011

    Article  Google Scholar 

  44. Honarpisheh AGM (2017) An experimental study on the process parameters of incremental forming of Al-Cu bimetal. J Comput Appl Res 1:73–83

    Google Scholar 

  45. Gheysarian A, Honarpisheh M (2019) Process parameters optimization of the explosive-welded Al/Cu bimetal in the incremental sheet metal forming process. IJS-T Mech Eng 43:945–956. https://doi.org/10.1007/s40997-018-0205-6

    Article  Google Scholar 

  46. Honarpisheh M, Keimasi M, Alinaghian I (2018) Numerical and experimental study on incremental forming process of Al/Cu bimetals: influence of process parameters on the forming force, dimensional accuracy and thicknes variations. J Mech Mater Struct 1:35–51

    Article  Google Scholar 

  47. Honarpisheh M, Mohammadi Jobedar M, Alinaghian I (2018) Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. Int J Adv Manuf Technol 96:3069–3080. https://doi.org/10.1007/s00170-018-1812-5

    Article  Google Scholar 

  48. Qin Q, He L, Li C (2021) Control and optimization of bulge defect in incremental forming of Cu-Al bimetal. Int J Mater Form

  49. Alinaghian M, Alinaghian I, Honarpisheh M (2019) Residual stress measurement of single point incremental formed Al/Cu bimetal using incremental hole-drilling method. Int J Lightweight Mater Manuf

  50. Bouhamed A, Jrad H, Mars J, Wali M, Gamaoun F, Dammak F (2019) Homogenization of elasto-plastic functionally graded material based on representative volume element: application to incremental forming process. Int J Mech Sci 160:412–420. https://doi.org/10.1016/j.ijmecsci.2019.07.005

    Article  Google Scholar 

  51. Sakhtemanian MR, Honarpisheh M, Amini S (2018) Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet. Int J Adv Manuf Technol 95:3781–3796. https://doi.org/10.1007/s00170-017-1462-z

    Article  Google Scholar 

  52. Sakhtemanian MR, Amini S, Honarpisheh M (2018) Simulation and investigation of mechanical and geometrical properties of St/CP-titanium bimetal sheet during the single point incremental forming process. Iran J Mater Form 1:1–18. https://doi.org/10.22099/IJMF.2017.26024.1085

    Article  Google Scholar 

  53. Sakhtemanian MR, Honarpisheh M, Amini S (2019) A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet. Int J Adv Manuf Technol 102:473–486. https://doi.org/10.1007/s00170-018-3148-6

    Article  Google Scholar 

  54. Hassan M, Hussain G, Ilyas M, Ali A (2020) Delamination analysis in single-point incremental forming of steel/steel bi-layer sheet metal. Arch Civ Mech Eng 20. https://doi.org/10.1007/s43452-020-00025-1

  55. Hassan M, Hussain G, Ali A, Ilyas M, Malik S, Khan WA, Bal B (2021) Effect of pre-rolling temperature on the interfacial properties and formability of steel-steel bilayer sheet in single point incremental forming. P I Mech Eng B-J Eng 235:406–416. https://doi.org/10.1177/0954405420963004

    Article  Google Scholar 

  56. Ashouri R, Shahrajabian H (2017) Experimental investigation of incremental forming process of bilayer hybrid brass/St13 sheets. Int J Adv Des Manuf Technol 3:127–135

    Google Scholar 

  57. Wei H, Hussain G, Iqbal A, Zhang ZP (2019) Surface roughness as the function of friction indicator and an important parameters-combination having controlling influence on the roughness: recent results in incremental forming. Int J Adv Manuf Technol 101:2533–2545. https://doi.org/10.1007/s00170-018-3096-1

    Article  Google Scholar 

  58. Al-Ghamdi KA, Hussain G (2016) On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes. Int J Adv Manuf Technol 87:267–278. https://doi.org/10.1007/s00170-016-8488-5

    Article  Google Scholar 

  59. Al-Ghamdi KA, Hussain G (2017) Stress gradient due to incremental forming of bonded metallic laminates. Mater Manuf Process 32:1384–1390. https://doi.org/10.1080/10426914.2017.1339315

    Article  Google Scholar 

  60. Al-Ghamdi KA, Hussain G (2016) SPIF of Cu/steel clad sheet: annealing effect on bond force and formability. Mater Manuf Process 31:758–763. https://doi.org/10.1080/10426914.2015.1048363

    Article  Google Scholar 

  61. Al-Ghamdi KA, Hussain G (2016) Parameter-formability relationship in ISF of tri-layered Cu-steel-Cu composite sheet metal: response surface and microscopic analyses. Int J Precis Eng Man 17:1633–1642. https://doi.org/10.1007/s12541-016-0189-3

    Article  Google Scholar 

  62. Al-Ghamdi KA, Hussain G (2019) Bulging in incremental sheet forming of cold bonded multi-layered Cu clad sheet: influence of forming conditions and bending. T Nonferr Metal Soc 29:112–122. https://doi.org/10.1016/S1003-6326(18)64920-9

    Article  Google Scholar 

  63. Al-Ghamdi KA, Hussain G (2019) On the free-surface roughness in incremental forming of a sheet metal: a study from the perspective of ISF strain, surface morphology, postforming properties, and process conditions. Metals

  64. Shi X, Hussain G, Butt SI, Song F, Huang D, Liu Y (2017) The state of residual stresses in the Cu/steel bonded laminates after ISF deformation: an experimental analysis. J Manuf Processes 30:14–26. https://doi.org/10.1016/j.jmapro.2017.09.009

    Article  Google Scholar 

  65. Wei H, Hussain G (2019) Mechanical characteristics of a roll-bonded Cu-clad steel sheet processed through incremental forming. Metall Mater Trans A 50:4594–4607. https://doi.org/10.1007/s11661-019-05366-y

    Article  Google Scholar 

  66. Hussain G, Al-Ghamdi KA (2017) Empirical modeling and simultaneous optimization of energy efficiency/demand, cost and productivity in incremental forming of metallic clad composite. Int J Hydrogen Energ 42:20375–20385. https://doi.org/10.1016/j.ijhydene.2017.06.044

    Article  Google Scholar 

  67. Al-Ghamdi KA, Hussain G (2017) On the CO 2 characterization in incremental forming of roll bonded laminates. J Clean Prod 156:214–225. https://doi.org/10.1016/j.jclepro.2017.04.047

    Article  Google Scholar 

  68. Kaufmann J, Rabe H, Siebert N, Wolf P, Cebulla H, Odenwald S (2016) Smart carbon fiber bicycle seat post with light and sensor integration. Procedia Engineering 147:562–567. https://doi.org/10.1016/j.proeng.2016.06.239

    Article  Google Scholar 

  69. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86

    Article  Google Scholar 

  70. Zhang J, Chaisombat K, He S, Wang CH (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater Design 36:75–80. https://doi.org/10.1016/j.matdes.2011.11.006

    Article  Google Scholar 

  71. King RL (1989) Fibre-reinforced composites materials, manufacturing and design. Composites 20:172–173. https://doi.org/10.1016/0010-4361(89)90651-4

    Article  Google Scholar 

  72. Vallittu PK, Närhi TO, Hupa L (2015) F Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Dent Mater 31:371–381. https://doi.org/10.1016/j.dental.2015.01.003

    Article  Google Scholar 

  73. Chan Y, Lew W, Lu E, Loretz T, Lu L, Lin C, Feng S (2018) An evaluation of the biocompatibility and osseointegration of novel glass fiber reinforced composite implants: in vitro and in vivo studies. Dent Mater 34:470–485. https://doi.org/10.1016/j.dental.2017.12.001

    Article  Google Scholar 

  74. Conte R, Ambrogio G, Pulice D, Gagliardi F, Filice L (2017) Incremental sheet forming of a composite made of thermoplastic matrix and glass-fiber reinforcement. Procedia Engineering 207:819–824. https://doi.org/10.1016/j.proeng.2017.10.835

    Article  Google Scholar 

  75. Ambrogio G, Conte R, Gagliardi F, De Napoli L, Filice L, Russo P (2018) A new approach for forming polymeric composite structures. Compos Struct 204:445–453. https://doi.org/10.1016/j.compstruct.2018.07.106

    Article  Google Scholar 

  76. Al-Obaidi A, Kunke A, Kräusel V (2019) Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J Manuf Processes 43:17–25. https://doi.org/10.1016/j.jmapro.2019.04.036

    Article  Google Scholar 

  77. Hou C, Su X, Peng X, Wu X, Yang D (2020) Thermal-assisted single point incremental forming of jute fabric reinforced poly(lactic acid) biocomposites. Fiber Polym 21:2373–2379. https://doi.org/10.1007/s12221-020-1016-0

    Article  Google Scholar 

  78. Torres S, Ortega R, Acosta P, Calderón E (2021) Hot incremental forming of biocomposites developed from linen fibres and a thermoplastic matrix. J Mech Eng 67:123–132

    Article  Google Scholar 

  79. Okada M, Kato T, Otsu M, Tanaka H, Miura T (2018) Development of optical-heating-assisted incremental forming method for carbon fiber reinforced thermoplastic sheet—forming characteristics in simple spot-forming and two-dimensional sheet-fed forming. J Mater Process Technol 256:145–153. https://doi.org/10.1016/j.jmatprotec.2018.02.014

    Article  Google Scholar 

  80. Xiao X, Kim J, Oh S, Kim Y (2021) Study on the incremental sheet forming of CFRP sheet. Compos Part A-Appl S 141:106209. https://doi.org/10.1016/j.compositesa.2020.106209

    Article  Google Scholar 

  81. Harhash M, Palkowski H (2021) Incremental sheet forming of steel/polymer/steel sandwich composites. J Matter Res Technol. https://doi.org/10.1016/j.jmrt.2021.04.088

    Article  Google Scholar 

  82. Jackson KP, Allwood JM, Landert M (2008) Incremental forming of sandwich panels. J Mater Process Technol 204:290–303. https://doi.org/10.1016/j.jmatprotec.2007.11.117

    Article  Google Scholar 

  83. Girjob C, Racz G (2017) Study of the formability of laminated lightweight metallic materials. MATEC Web of Conferences 121. https://doi.org/10.1051/matecconf/20171210

  84. Liu Z, Chen H (2020) Deformation mechanism and failure-tolerant characteristics of polymer-coated sheet metal laminates subjected to different loading conditions. J Mater Res Technol 9:3907–3923. https://doi.org/10.1016/j.jmrt.2020.02.017

    Article  Google Scholar 

  85. Davarpanah MA, Malhotra R (2018) Formability and failure modes in single point incremental forming of metal-polymer laminates. Procedia Manufacturing 26:343–348. https://doi.org/10.1016/j.promfg.2018.07.042

    Article  Google Scholar 

  86. Walczyk DF, Hosford JF, Papazian JM (2003) Using reconfigurable tooling and surface heating for incremental forming of composite aircraft parts. J Manuf Sci E-T ASME 125:333–343

    Article  Google Scholar 

  87. Al-Obaidi A, Graf A, Kräusel V, Trautmann M (2019) Heat supported single point incremental forming of hybrid laminates for orthopedic applications. Procedia Manufacturing 29:21–27. https://doi.org/10.1016/j.promfg.2019.02.101

    Article  Google Scholar 

  88. Gatea S, Chen F, Long H, Ou H (2017) Deformation and fracture of AMC under different heat treatment conditions and its suitability for incremental sheet forming. Procedia Engineering 207:848–853. https://doi.org/10.1016/j.proeng.2017.10.840

    Article  Google Scholar 

  89. Clavijo-Chaparro SL, Iturbe-Ek J, Lozano-Sánchez LM, Sustaita AO, Elías-Zúñiga A (2018) Plasticized and reinforced poly(methyl methacrylate) obtained by a dissolution-dispersion process for single point incremental forming: enhanced formability towards the fabrication of cranial implants. Polym Test 68:39–45. https://doi.org/10.1016/j.polymertesting.2018.03.034

    Article  Google Scholar 

  90. Borić A, Kalendová A, Urbanek M, Pepelnjak T (2019) Characterisation of polyamide (PA)12 nanocomposites with montmorillonite (MMT) filler clay used for the incremental forming of sheets. Polymers-Basel 11:1248. https://doi.org/10.3390/polym11081248

    Article  Google Scholar 

  91. Matsumoto R, Sakaguchi H, Otsu M, Utsunomiya H (2020) Plastic joining of open-cell nickel foam and polymethyl methacrylate (PMMA) sheet by friction stir incremental forming. J Mater Process Technol 282:116691. https://doi.org/10.1016/j.jmatprotec.2020.116691

    Article  Google Scholar 

  92. Lozano-Sánchez LM, Sustaita AO, Soto M, Biradar S, Ge L, Segura-Cárdenas E, Diabb J, Elizalde LE, Barrera EV, Elías-Zúñiga A (2017) Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets. J Mater Process Technol 242:218–227. https://doi.org/10.1016/j.jmatprotec.2016.11.032

    Article  Google Scholar 

  93. Duflou JR, Habraken A, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J (2018) Single point incremental forming: state-of-the-art and prospects. Int J Mater Form 11:743–773. https://doi.org/10.1007/s12289-017-1387-y

    Article  Google Scholar 

  94. Martins PAF, Bay N, Skjoedt M, Silva MB (2008) T Theory of single point incremental forming. CIRP Ann 57:247–252. https://doi.org/10.1016/j.cirp.2008.03.047

    Article  Google Scholar 

  95. Silva MB, Skjoedt M, Martins PAF, Bay N (2008) Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tool Manuf 48:73–83. https://doi.org/10.1016/j.ijmachtools.2007.07.004

    Article  Google Scholar 

  96. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF (2008) Single-point incremental forming and formability—failure diagrams. J Strain Anal Eng 43:15–35. https://doi.org/10.1243/03093247JSA340

    Article  Google Scholar 

  97. Allwood JM, Shouler DR, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344:621–628

    Article  Google Scholar 

  98. Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209:1158–1174

    Article  Google Scholar 

  99. Malhotra R, Xue L, Belytschko T, Cao J (2012) Mechanics of fracture in single point incremental forming. J Mater Process Technol 212:1573–1590. https://doi.org/10.1016/j.jmatprotec.2012.02.021

    Article  Google Scholar 

  100. Smith J, Malhotra R, Liu WK, Cao J (2013) Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol 69:1185–1201. https://doi.org/10.1007/s00170-013-5053-3

    Article  Google Scholar 

  101. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tool Manuf 85:14–29. https://doi.org/10.1016/j.ijmachtools.2014.04.007

    Article  Google Scholar 

  102. Emmens WC, van den Boogaard AH (2008) Tensile tests with bending: a mechanism for incremental forming. Int J Mater Form 1:1155–1158. https://doi.org/10.1007/s12289-008-0185-y

    Article  Google Scholar 

  103. Emmens WC, van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695. https://doi.org/10.1016/j.jmatprotec.2008.10.003

    Article  Google Scholar 

  104. Fang Y, Lu B, Chen J, Xu DK, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214:1503–1515. https://doi.org/10.1016/j.jmatprotec.2014.02.019

    Article  Google Scholar 

  105. Franzen V, Kwiatkowski L, Martins PAF, Tekkaya AE (2009) Single point incremental forming of PVC. J Mater Process Technol 209:462–469. https://doi.org/10.1016/j.jmatprotec.2008.02.013

    Article  Google Scholar 

  106. Yang Z, Chen F (2020) Mechanism of twist in incremental sheet forming of thermoplastic polymer. Mater Des 195:108997. https://doi.org/10.1016/j.matdes.2020.108997

    Article  Google Scholar 

  107. Do V, Pham Q, Kim Y (2017) Identification of forming limit curve at fracture in incremental sheet forming. Int J Adv Manuf Technol 92:4445–4455. https://doi.org/10.1007/s00170-017-0441-8

    Article  Google Scholar 

  108. Mirnia MJ, Shamsari M (2017) Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol 244:17–43. https://doi.org/10.1016/j.jmatprotec.2017.01.029

    Article  Google Scholar 

  109. Shi P, Li Y, Yang M (2018) Formation and laws of convex on single-point thermal incremental forming part. Int J Performability Eng 12:3247–3256

    Google Scholar 

  110. Liu X, Huang L, Li J, Su H (2019) Electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil. Int J Adv Manuf Technol 104:411–431. https://doi.org/10.1007/s00170-019-03892-y

    Article  Google Scholar 

  111. Hussain G, Valaei H, Al-Ghamdi KA, Khan B (2016) Finite element and experimental analyses of cylindrical hole flanging in incremental forming. T Nonferr Metal Soc 26:2419–2425. https://doi.org/10.1016/S1003-6326(16)64362-5

    Article  Google Scholar 

  112. Isidore BBL, Hussain G, Shamchi SP, Khan WA (2016) Prediction and control of pillow defect in single point incremental forming using numerical simulations. J Mech Sci Technol 30:2151–2161. https://doi.org/10.1007/s12206-016-0422-0

    Article  Google Scholar 

  113. Lingam R, Lingam R, Bansal A, Bansal A, Reddy NV, Reddy NV (2016) Analytical prediction of formed geometry in multi-stage single point incremental forming. Int J Mater Form 9:395–404. https://doi.org/10.1007/s12289-015-1226-y

    Article  Google Scholar 

  114. Bansal A, Lingam R, Yadav SK, Venkata Reddy N (2017) Prediction of forming forces in single point incremental forming. J Manuf Process 28:486–493. https://doi.org/10.1016/j.jmapro.2017.04.016

    Article  Google Scholar 

  115. Mugendiran V, Gnanavelbabu A (2017) Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing. J Mech Sci Technol 31:2943–2949. https://doi.org/10.1007/s12206-017-0537-y

    Article  Google Scholar 

  116. Nirala HK, Jain PK, Roy JJ, Samal MK, Tandon P (2017) An approach to eliminate stepped features in multistage incremental sheet forming process: experimental and FEA analysis. J Mech Sci Technol 31:599–604. https://doi.org/10.1007/s12206-017-0112-6

    Article  Google Scholar 

  117. Raju C, Haloi N, Sathiya Narayanan C (2017) Strain distribution and failure mode in single point incremental forming (SPIF) of multiple commercially pure aluminum sheets. J Manuf Process 30:328–335. https://doi.org/10.1016/j.jmapro.2017.09.033

    Article  Google Scholar 

  118. Gupta P, Jeswiet J (2018) Effect of temperatures during forming in single point incremental forming. Int J Adv Manuf Technol 95:3693–3706

    Article  Google Scholar 

  119. Besong LI, Buhl J, Bambach M (2019) Investigations on hole-flanging by paddle forming and a comparison with single point incremental forming. Int J Mech Sci 164:105143. https://doi.org/10.1016/j.ijmecsci.2019.105143

    Article  Google Scholar 

  120. Choi H, Lee C (2019) A Mathematical model to predict thickness distribution and formability of incremental forming combined with stretch forming. Robot Cim-Int Manuf 55:164–172. https://doi.org/10.1016/j.rcim.2018.07.014

    Article  Google Scholar 

  121. Guo X, Wang C, Xu Y, El-Aty AA, Zhang S (2019) I Incremental forming characteristics of hollow parts with grooves. Int J Adv Manuf Technol 102:829–837. https://doi.org/10.1007/s00170-018-3201-5

    Article  Google Scholar 

  122. Gupta P, Szekeres A, Jeswiet J (2019) Design and development of an aerospace component with single-point incremental forming. Int J Adv Manuf Technol 103:3683–3702. https://doi.org/10.1007/s00170-019-03622-4

    Article  Google Scholar 

  123. Kumar A, Gulati V, Kumar P, Singh V, Kumar B, Singh H (2019) Parametric effects on formability of AA2024-O aluminum alloy sheets in single point incremental forming. J Mater Res Technol 8:1461–1469. https://doi.org/10.1016/j.jmrt.2018.11.001

    Article  Google Scholar 

  124. Buffa G, Gucciardi M, Fratini L, Micari F (2020) Multi-directional vs. mono-directional multi-step strategies for single point incremental forming of non-axisymmetric components. J Manuf Process 55:22–30. https://doi.org/10.1016/j.jmapro.2020.03.055

    Article  Google Scholar 

  125. Su C, Zhao Z, Lv Y, Wang R, Wang Q, Wang M (2019) Effect of process parameters on plastic formability and microstructures of magnesium alloy in single point incremental forming. J Mater Eng Perform 28:7737–7755. https://doi.org/10.1007/s11665-019-04460-x

    Article  Google Scholar 

  126. de Castro Maciel D, Silva GCD, de Quadros LM (2020) Incremental stamping forming with use of roller ball tool in aluminum and magnesium alloy. Int J Adv Manuf Technol 108:455–462. https://doi.org/10.1007/s00170-020-05425-4

    Article  Google Scholar 

  127. Luo Y, Luo Y, Yang W, Yang W, Liu Z, Liu Z, Wang Y, Wang Y, Du R, Du R (2016) Numerical simulation and experimental study on cyclic multi-point incremental forming process. Int J Adv Manuf Technol 85:1249–1259. https://doi.org/10.1007/s00170-015-8030-1

    Article  Google Scholar 

  128. Fiorentino A, Fiorentino A, Feriti GC, Feriti GC, Ceretti E, Ceretti E, Giardini C, Giardini C (2018) Capability of iterative learning control and influence of the material properties on the improvement of the geometrical accuracy in incremental sheet forming process. Int J Mater Form 11:125–134. https://doi.org/10.1007/s12289-016-1335-2

    Article  Google Scholar 

  129. Teymoori F, Lohmousavi M, Etesam A (2016) Numerical analysis of fluid structure interaction in water jet incremental sheet forming process using coupled Eulerian-Lagrangian approach. Int J Interact Des Manuf 10:203–210. https://doi.org/10.1007/s12008-013-0197-9

    Article  Google Scholar 

  130. Li Y, Daniel WJT, Meehan PA (2017) Deformation analysis in single-point incremental forming through finite element simulation. Int J Adv Manuf Technol 88:255–267. https://doi.org/10.1007/s00170-016-8727-9

    Article  Google Scholar 

  131. Long Y, Li Y, Sun J, Ille I, Li J, Twiefel J (2018) Effects of process parameters on force reduction and temperature variation during ultrasonic assisted incremental sheet forming process. Int J Adv Manuf Technol 97:13–24. https://doi.org/10.1007/s00170-018-1886-0

    Article  Google Scholar 

  132. Perez-Santiago R, Bagudanch I, García-Romeu ML, Nicolas H (2012) Effect of strain hardening exponent in the incremental sheet forming force. Proc. 14th Int. Conf. Metal Forming

  133. Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C (2014) Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater Des 63:20–29. https://doi.org/10.1016/j.matdes.2014.05.066

    Article  Google Scholar 

  134. Nguyen D, Park J, Kim Y (2010) Ductile fracture prediction in rotational incremental forming for magnesium alloy sheets using combined kinematic/isotropic hardening model. Metall Mater Trans A Phys Metall Mater Sci 41:1983–1994. https://doi.org/10.1007/s11661-010-0235-1

    Article  Google Scholar 

  135. Shamsari M, Shamsari M, Mirnia MJ, Mirnia MJ, Elyasi M, Elyasi M, Baseri H, Baseri H, Liu C, Li Y et al (2018) Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy. Int J Adv Manuf Technol 94:2357–2368. https://doi.org/10.1007/s00170-017-1031-5

    Article  Google Scholar 

  136. Nourmohammadi AA, Elyasi M, Mirnia MJ (2019) Flexibility improvement in two-point incremental forming by implementing multi-point die. Int J Adv Manuf Technol 102:2933–2952. https://doi.org/10.1007/s00170-019-03307-y

    Article  Google Scholar 

  137. Ai S, Dai R, Long H (2020) Investigating formability enhancement in double side incremental forming by developing a new test method of tension under cyclic bending and compression. J Mater Process Technol 275:116349. https://doi.org/10.1016/j.jmatprotec.2019.116349

    Article  Google Scholar 

  138. Shi Y, Zhang W, Cao J, Ehmann KF (2019) An experimental and numerical study of dieless water jet incremental microforming. J Manuf Sci E- T ASME 141

  139. Wen T, Zhang S, Zheng J, Huang Q, Liu Q (2016) Bi-directional dieless incremental flanging of sheet metals using a bar tool with tapered shoulders. J Mater Process Technol 229:795–803. https://doi.org/10.1016/j.jmatprotec.2015.11.005

    Article  Google Scholar 

  140. Movahedinia H, Movahedinia H, Mirnia MJ, Mirnia MJ, Elyasi M, Elyasi M, Baseri H, Baseri H (2018) An investigation on flaring process of thin-walled tubes using multistage single point incremental forming. Int J Adv Manuf Technol 94:867–880. https://doi.org/10.1007/s00170-017-0971-0

    Article  Google Scholar 

  141. Zhiheng W, Xuepeng Z, Jun C (2020) An effective thermal-mechanical coupling method for simulating friction stir-assisted incremental aluminum alloy sheet forming. Int J Adv Manuf Technol 107:3449–3458. https://doi.org/10.1007/s00170-020-05286-x

    Article  Google Scholar 

  142. Zhang H, Lu B, Chen J, Feng S, Li Z, Long H (2017) Thickness control in a new flexible hybrid incremental sheet forming process. P I Mech Eng B-J Eng 231:779–791. https://doi.org/10.1177/0954405417694061

    Article  Google Scholar 

  143. Benedetti M, Fontanari V, Monelli B, Tassan M (2017) Single-point incremental forming of sheet metals: experimental study and numerical simulation. P I Mech Eng B-J Eng 231:301–312. https://doi.org/10.1177/0954405415612351

    Article  Google Scholar 

  144. Boudhaouia S, Boudhaouia S, Gahbiche MA, Gahbiche MA, Ayed Y, Ayed Y, Giraud E, Giraud E, Ben Salem W, Ben Salem W et al (2018) Experimental and numerical study of a new hybrid process: multi-point incremental forming (MPIF). Int J Mater Form 11:815–827. https://doi.org/10.1007/s12289-017-1392-1

    Article  Google Scholar 

  145. Morales-Palma D, Borrego M, Martínez-Donaire A, Centeno G, Vallellano C (2029) Optimization of hole-flanging by single point incremental forming in two stages. Materials 2018:11. https://doi.org/10.3390/ma11102029

    Article  Google Scholar 

  146. Moser N, Pritchet D, Ren H, Ehmann KF, Cao J (2016) An efficient and general finite element model for double-sided incremental forming. J Manuf Sci E- T ASME 138

  147. Ren H, Moser N, Zhang Z, Ndip-Agbor E, Smith J, Ehmann KF (2015) Effects of tool positions in accumulated double-sided incremental forming on part geometry. J Manuf Sci E- T ASME 137

  148. Mohammadi A, Mohammadi A, Vanhove H, Vanhove H, Van Bael A, Van Bael A, Duflou JR, Duflou JR (2016) Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form 9:339–351. https://doi.org/10.1007/s12289-014-1203-x

    Article  Google Scholar 

  149. Eyckens P, Del-Lero Moreau J, Duflou JR, Van Bael A, Van Houtte P (2009) MK Modelling of sheet formability in the incremental sheet forming process, taking into account through-thickness shear. Int J Mater Form 2:379–382. https://doi.org/10.1007/s12289-009-0458-0

    Article  Google Scholar 

  150. Wang H, Zhang R, Zhang H, Hu Q, Chen J (2018) Novel strategies to reduce the springback for double-sided incremental forming. Int J Adv Manuf Technol 96:973–979. https://doi.org/10.1007/s00170-018-1659-9

    Article  Google Scholar 

  151. Robert C, Dal Santo P, Delamézière A, Potiron A, Batoz JL (2008) On some computational aspects for incremental sheet metal forming simulations. Int J Mater Form 1:1195–1198. https://doi.org/10.1007/s12289-008-0155-4

    Article  Google Scholar 

  152. Hadoush A, van den Boogaard AH (2009) On the performance of substructuring implicit simulation of single point incremental forming. Int J Mater Form 2:559–562. https://doi.org/10.1007/s12289-009-0427-7

    Article  Google Scholar 

  153. Hadoush A, van den Boogaard AH (2009) Substructuring in the implicit simulation of single point incremental sheet forming: the incrementally updated approach. Int J Mater Form 2:181–189. https://doi.org/10.1007/s12289-009-0402-3

    Article  Google Scholar 

  154. Min J, Kuhlenkötter B, Shu C, Störkle D, Thyssen L (2018) Experimental and numerical investigation on incremental sheet forming with flexible die-support from metallic foam. J Manuf Process 31:605–612. https://doi.org/10.1016/j.jmapro.2017.12.013

    Article  Google Scholar 

  155. Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou JR (2008) Multi-step toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1:1203–1206. https://doi.org/10.1007/s12289-008-0157-2

    Article  Google Scholar 

  156. Panjwani D, Priyadarshi S, Jain PK, Samal MK, Roy JJ, Roy D, Tandon P (2017) A novel approach based on flexible supports for forming non-axisymmetric parts in SPISF. Int J Adv Manuf Technol 92:2463–2477. https://doi.org/10.1007/s00170-017-0223-3

    Article  Google Scholar 

  157. Shrivastava P, Tandon P (2019) Microstructure and texture based analysis of forming behavior and deformation mechanism of AA1050 sheet during single point incremental forming. J Mater Process Technol 266:292–310. https://doi.org/10.1016/j.jmatprotec.2018.11.012

    Article  Google Scholar 

  158. Mohanraj R, Elangovan S (2020) Metal forming of Ti6Al4V alloy for aerospace application. T Can Soc Mech Eng 1:56–64

    Article  Google Scholar 

  159. Shrivastava P, Kumar P, Tandon P, Pesin A (2018) Improvement in formability and geometrical accuracy of incrementally formed AA1050 sheets by microstructure and texture reformation through preheating, and their FEA and experimental validation. J Braz Soc Mech Sci 40:1–15. https://doi.org/10.1007/s40430-018-1255-9

    Article  Google Scholar 

  160. Honarpisheh M, Honarpisheh M, Abdolhoseini MJ, Abdolhoseini MJ, Amini S, Amini S (2016) Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol 83:2027–2037. https://doi.org/10.1007/s00170-015-7717-7

    Article  Google Scholar 

  161. Pacheco PAP, Silveira ME (2018) Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating. Int J Adv Manuf Technol 94:3097–3108. https://doi.org/10.1007/s00170-017-0879-8

    Article  Google Scholar 

  162. Pacheco PAP, Silveira ME, Silva JA (2019) Heat distribution in electric hot incremental sheet forming. Int J Adv Manuf Technol 102:991–998. https://doi.org/10.1007/s00170-018-03228-2

    Article  Google Scholar 

  163. Leitao G, Yixi Z, Zhongqi Y, Hui Y (2020) Formability analysis of electrically assisted double-side multi-point incremental sheet forming. Int J Adv Manuf Technol 108:3405–3417. https://doi.org/10.1007/s00170-020-05576-4

    Article  Google Scholar 

  164. Zheng C, Pan C, Tian Z, Zhao X, Zhao G, Ji Z, Song L (2020) Laser shock induced incremental forming of pure copper foil and its deformation behavior. Opt Laser Technolnol 121:105785. https://doi.org/10.1016/j.optlastec.2019.105785

    Article  Google Scholar 

  165. Zheng C, Tian Z, Zhao X, Tan Y, Zhang G, Zhao G, Ji Z (2020) Effect of pulsed laser parameters on deformation inhomogeneity in laser shock incremental forming of pure copper foil. Opt Laser Technol 127:106205. https://doi.org/10.1016/j.optlastec.2020.106205

    Article  Google Scholar 

  166. Henrard C, Henrard C, Bouffioux C, Bouffioux C, Eyckens P, Eyckens P, Sol H, Sol H, Duflou JR, Duflou JR et al (2011) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47:573–590. https://doi.org/10.1007/s00466-010-0563-4

    Article  Google Scholar 

  167. Esmaeilpour R, Kim H, Park T, Pourboghrat F, Mohammed B (2017) Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075. Int J Mech Sci 133:544–554. https://doi.org/10.1016/j.ijmecsci.2017.09.019

    Article  Google Scholar 

  168. Han K, Li X, Peng X, Wang H, Li D, Li Y, Li Q (2019) Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming. Int J Mech Sci 160:75–89. https://doi.org/10.1016/j.ijmecsci.2019.06.024

    Article  Google Scholar 

  169. Said LB, Mars J, Wali M, Dammak F (2017) Numerical prediction of the ductile damage in single point incremental forming process. Int J Mech Sci 131–132:546–558. https://doi.org/10.1016/j.ijmecsci.2017.08.026

    Article  Google Scholar 

  170. Jin K, Guo X, Tao J, Wang H, Kim N, Gu Y (2016) A model of one-surface cyclic plasticity with lemaitre damage criterion for plastic instability prediction in the incremental forming process. Int J Mech Sci 114:88–97. https://doi.org/10.1016/j.ijmecsci.2016.05.016

    Article  Google Scholar 

  171. Basak S, Prasad KS, Sidpara AM, Panda SK (2019) Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form 12:623–642. https://doi.org/10.1007/s12289-018-1439-y

    Article  Google Scholar 

  172. Gatea S, Lu B, Chen J, Ou H, Mccartney G (2019) Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model. Int J Mater Form 12:553–574. https://doi.org/10.1007/s12289-018-1434-3

    Article  Google Scholar 

  173. Gatea S, Gatea S, Xu D, Xu D, Ou H, Ou H, Mccartney G, Mccartney G (2018) Evaluation of formability and fracture of pure titanium in incremental sheet forming. Int J Adv Manuf Technol 95:625–641. https://doi.org/10.1007/s00170-017-1195-z

    Article  Google Scholar 

  174. Guzmán CF, Yuan S, Duchêne L, Saavedra Flores EI, Habraken AM (2018) Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct 151:45–56. https://doi.org/10.1016/j.ijsolstr.2017.04.013

    Article  Google Scholar 

  175. Marathe SP, Raval HK (2019) Numerical investigation on forming behavior of friction stir tailor welded blanks (FSTWBs) during single-point incremental forming (SPIF) process. J Braz Soc Mech Sci 41:1–18. https://doi.org/10.1007/s40430-019-1929-y

    Article  Google Scholar 

  176. Renhao W, Meng L, Sheng C, Xinmei L, Mei Y, Wenshuai H, Jun C (2020) Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals. Int J Adv Manuf Technol 107:2177–2187. https://doi.org/10.1007/s00170-020-05144-w

    Article  Google Scholar 

  177. Liu K, Zhang B, Xu X, Ye J, Liu C (2019) Simulation and analysis of process-induced distortions in hemispherical thermostamping for unidirectional thermoplastic composites. Polym Composite 40:1786–1800. https://doi.org/10.1002/pc.24936

    Article  Google Scholar 

  178. Venkatesan S, Kalyanasundaram S (2010) Finite element analysis and optimization of process parameters during stamp forming of composite materials. IOP Conf Ser Mater Sci Eng 10:12138. https://doi.org/10.1088/1757-899X/10/1/012138

    Article  Google Scholar 

  179. Tang H, Dai H, Wu H (2021) An effect of hygrothermal effects on high velocity impact event for polymer matrix composites. Appl Math Model 91:653–669. https://doi.org/10.1016/j.apm.2020.09.062

    Article  MathSciNet  MATH  Google Scholar 

  180. Uscinowicz R (2013) Experimental identification of yield surface of Al–Cu bimetallic sheet. Compos Part B-Eng 55:96–108. https://doi.org/10.1016/j.compositesb.2013.06.002

    Article  Google Scholar 

  181. Wang Z, Zhang W, Luo Q, Zheng G, Li Q, Sun G (2020) A novel failure criterion based upon forming limit curve for thermoplastic composites. Compos Part B-Eng 202:108320. https://doi.org/10.1016/j.compositesb.2020.108320

    Article  Google Scholar 

  182. Kazemi ME, Shanmugam L, Dadashi A, Shakouri M, Lu D, Du Z, Hu Y, Wang J, Zhang W, Yang L et al (2021) Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites. Compos Part B-Eng 207:108554. https://doi.org/10.1016/j.compositesb.2020.108554

    Article  Google Scholar 

  183. Zhang J, Zhang X (2015) Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contac. Compos Struct 125:51–57. https://doi.org/10.1016/j.compstruct.2015.01.050

    Article  Google Scholar 

  184. Fu T, Xu J, Hui Z (2021) Analysis of induction heating temperature field of plain weave CFRP based on finite element meso model. Appl Compos Mater 28:149–163. https://doi.org/10.1007/s10443-020-09852-0

    Article  Google Scholar 

  185. Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C (2014) Critical analysis of necking and fracture limit strains and forming forces in single point incremental forming. Mater Design

  186. Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214:1557–1565. https://doi.org/10.1016/j.jmatprotec.2014.02.026

    Article  Google Scholar 

  187. Silva MB, Nielsen PS, Bay N, Martins PAF (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56:893–903. https://doi.org/10.1007/s00170-011-3254-1

    Article  Google Scholar 

  188. Liu Z, Li Y, Meehan PA (2013) Experimental investigation of mechanical properties, formability and force measurement for AA7075-O aluminium alloy sheets formed by incremental forming. Int J Precis Eng Man 11:1891–1899

    Article  Google Scholar 

  189. Li P, He J, Liu Q, Yang M, Wang Q, Yuan Q, Li Y (2017) Evaluation of forming forces in ultrasonic incremental sheet metal forming. Aerosp Sci Technol 63:132–139. https://doi.org/10.1016/j.ast.2016.12.028

    Article  Google Scholar 

  190. Bai L, Li Y, Yang M, Yao Z, Yao Z, Kou H (2018) Influences of process parameters and vibration parameters on the forming force in the ultrasonic-assisted incremental forming process. Adv Mater Sci Eng 2018:1–12. https://doi.org/10.1155/2018/5726845

    Article  Google Scholar 

  191. Kumar A, Gulati V (2018) Experimental investigations and optimization of forming force in incremental sheet forming. Sadhana-Acad P Eng S 43:1–15. https://doi.org/10.1007/s12046-018-0926-7

    Article  Google Scholar 

  192. Ren H, Li F, Moser N, Leem D, Li T, Ehmann K, Cao J (2018) General contact force control algorithm in double-sided incremental forming. CIRP Ann 67:381–384. https://doi.org/10.1016/j.cirp.2018.04.057

    Article  Google Scholar 

  193. Bai L, Li Y, Yang M, Lin Y, Yuan Q, Zhao R (2019) Modeling and analysis of single point incremental forming force with static pressure support and ultrasonic vibration. Materials 12. https://doi.org/10.3390/ma12121899

  194. Chang Z, Li M, Chen J (2019) Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. Int J Mach Tool Manuf 140:62–76. https://doi.org/10.1016/j.ijmachtools.2019.03.003

    Article  Google Scholar 

  195. Kumar A, Gulati V, Kumar P, Singh H (2019) Forming force in incremental sheet forming: a comparative analysis of the state of the art. J Braz Soc Mech Sci 41:1–45. https://doi.org/10.1007/s40430-019-1755-2

    Article  Google Scholar 

  196. Torsakul S, Kuptasthien N (2019) Effects of three parameters on forming force of the single point incremental forming process. J Mech Sci Technol 33:2817–2823. https://doi.org/10.1007/s12206-019-0528-2

    Article  Google Scholar 

  197. Xiao X, Kim C, Lv X, Hwang T, Kim Y (2019) Formability and forming force in incremental sheet forming of AA7075-T6 at different temperatures. J Mech Sci Technol 33:3795–3802. https://doi.org/10.1007/s12206-019-0722-2

    Article  Google Scholar 

  198. Kilani L, Mabrouki T, Ayadi M, Chermiti H, Belhadi S (2020) Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process. Int J Adv Manuf Technol 106:4123–4142. https://doi.org/10.1007/s00170-019-04918-1

    Article  Google Scholar 

  199. Zhai W, Li Y, Cheng Z, Sun L, Li F, Li J (2020) Investigation on the forming force and surface quality during ultrasonic-assisted incremental sheet forming process. Int J Adv Manuf Technol 106:2703–2719. https://doi.org/10.1007/s00170-019-04870-0

    Article  Google Scholar 

  200. Al-Ghamdi KA, Hussain G (2015) Forming forces in incremental forming of a geometry with corner feature: investigation into the effect of forming parameters using response surface approach. Int J Adv Manuf Technol 76:2185–2197. https://doi.org/10.1007/s00170-014-6409-z

    Article  Google Scholar 

  201. Liu Z, Li Y (2020) Small data-driven modeling of forming force in single point incremental forming using neural networks. Eng Comput-Germany 36:1589–1597. https://doi.org/10.1007/s00366-019-00781-6

    Article  Google Scholar 

  202. Bagudanch I, Garcia-Romeu ML, Centeno G, El Iaszu Niga A, Ciurana J (2014) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol

  203. Li Y, Liu Z, Lu H, Daniel WJT, Liu S, Meehan PA (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571–587. https://doi.org/10.1007/s00170-014-5665-2

    Article  Google Scholar 

  204. Behera AK, Ou H (2016) Effect of stress relieving heat treatment on surface topography and dimensional accuracy of incrementally formed grade 1 titanium sheet parts. Int J Adv Manuf Technol 87:3233–3248. https://doi.org/10.1007/s00170-016-8610-8

    Article  Google Scholar 

  205. Behera AK, Lu B, Ou H (2016) Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types. Int J Adv Manuf Technol 83:1099–1111. https://doi.org/10.1007/s00170-015-7649-2

    Article  Google Scholar 

  206. Lu H, Kearney M, Li Y, Liu S, Daniel WJT, Meehan PA (2016) Model predictive control of incremental sheet forming for geometric accuracy improvement. Int J Adv Manuf Technol 82:1781–1794. https://doi.org/10.1007/s00170-015-7431-5

    Article  Google Scholar 

  207. Rakesh L, Amit S, Reddy NV (2016) Deflection compensations for tool path to enhance accuracy during double-sided incremental forming. J Manuf Sci Eng Trans ASME 138

  208. Li L, Wang J, Wang B (2017) Geometric accuracy of incremental sheet forming for TRIP590. J Mech Sci Technol 31:5257–5264. https://doi.org/10.1007/s12206-017-1018-z

    Article  Google Scholar 

  209. Li Z, Lu S, Zhang T, Mao Z, Zhang C (2017) Analysis of geometrical accuracy based on multistage single point incremental forming of a straight wall box part. Int J Adv Manuf Technol 93:2783–2789. https://doi.org/10.1007/s00170-017-0723-1

    Article  Google Scholar 

  210. Lingam R, Prakash O, Belk JH, Reddy NV (2017) Automatic feature recognition and tool path strategies for enhancing accuracy in double sided incremental forming. Int J Adv Manuf Technol 88:1639–1655. https://doi.org/10.1007/s00170-016-8880-1

    Article  Google Scholar 

  211. Mohammadi A, Vanhove H, Van Bael A, Seefeldt M, Seefeldt M (2017) Effect of laser transformation hardening on the accuracy of SPIF formed parts. J Manuf Sci E- T ASME 139

  212. Khan S, Hussain G, Ilyas M, Rashid H, Khan MI, Khan WA (2018) Appropriate heat treatment and incremental forming route to produce age-hardened components of Al-2219 alloy with minimized form error and high formability. J Mater Process Technol 256:262–273. https://doi.org/10.1016/j.jmatprotec.2017.12.042

    Article  Google Scholar 

  213. Maqbool F, Bambach M (2018) Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int J Mech Sci 136:279–292. https://doi.org/10.1016/j.ijmecsci.2017.12.053

    Article  Google Scholar 

  214. Mingshun Y, Lang B, Yunbo L, Yan L, Qilong Y, Renfeng Z (2019) Research on the radial accuracy of ultrasonic vibration-assisted single point incremental forming parts. Int J Aerospace Eng 2019:1–9. https://doi.org/10.1155/2019/9809815

    Article  Google Scholar 

  215. Dabwan A, Ragab AE, Saleh MA, Anwar S, Ghaleb AM, Rehman AU (2020) Study of the effect of process parameters on surface profile accuracy in single-point incremental sheet forming of AA1050-H14 aluminum alloy. Adv Mater Sci Eng 2020:1–14. https://doi.org/10.1155/2020/7265941

    Article  Google Scholar 

  216. Sbayti M, Bahloul R, Belhadjsalah H (2020) Efficiency of optimization algorithms on the adjustment of process parameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming. Neural Comput Appl 32:8829–8846. https://doi.org/10.1007/s00521-019-04354-y

    Article  Google Scholar 

  217. Zhang Z, Ren H, Xu R, Moser N, Smith J, Ndip-Agbor E, Malhotra R, Xia ZC, Cao J (2015) A mixed double-sided incremental forming toolpath strategy for improved geometric accuracy. J Manuf Sci E- T ASME 137

  218. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68:241–247. https://doi.org/10.1007/s00170-013-4724-4

    Article  Google Scholar 

  219. Voswinckel H, Bambach M, Hirt G (2015) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form 8:391–399. https://doi.org/10.1007/s12289-014-1182-y

    Article  Google Scholar 

  220. Li Y, Lu H, Daniel WJT, Meehan PA (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79:2041–2055. https://doi.org/10.1007/s00170-015-6986-5

    Article  Google Scholar 

  221. Najafabady SA, Ghaei A (2016) An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. Int J Adv Manuf Technol 87:3579–3588. https://doi.org/10.1007/s00170-016-8712-3

    Article  Google Scholar 

  222. Formisano A, Durante M, Boccarusso L, Astarita A (2017) The influence of thermal oxidation and tool-sheet contact conditions on the formability and the surface quality of incrementally formed grade 1 titanium thin sheets. Int J Adv Manuf Technol 93:3723–3732. https://doi.org/10.1007/s00170-017-0805-0

    Article  Google Scholar 

  223. Mulay A, Ben S, Ismail S, Kocanda A (2017) Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. J Braz Soc Mech Sci 39:3997–4010. https://doi.org/10.1007/s40430-016-0703-7

    Article  Google Scholar 

  224. Mohanty S, Regalla SP, Daseswara Rao YV (2018) Investigation of influence of part inclination and rotation on surface quality in robot assisted incremental sheet metal forming (RAISF). CIRP J Manuf Sci Technol 22:37–48. https://doi.org/10.1016/j.cirpj.2018.04.005

    Article  Google Scholar 

  225. Ramkumar K, Paulraj G, Elangovan K, Sathiya Narayanan C (2018) Forming limit diagram, void analysis, strain distribution and surface roughness for SS430 sheets during multipoint incremental forming. Arch Metall Mater 63:1709–1714. https://doi.org/10.24425/amm.2018.125096

    Article  Google Scholar 

  226. Chang Z, Chen J (2019) Analytical model and experimental validation of surface roughness for incremental sheet metal forming parts. Int J Mach Tool Manuf 146:103453. https://doi.org/10.1016/j.ijmachtools.2019.103453

    Article  Google Scholar 

  227. Dakhli M, Boulila A, Manach P, Tourki Z (2019) Optimization of processing parameters and surface roughness of metallic sheets plastically deformed by incremental forming process. Int J Adv Manuf Technol 102:977–990. https://doi.org/10.1007/s00170-018-03265-x

    Article  Google Scholar 

  228. Kumar A, Gulati V (2019) Experimental investigation and optimization of surface roughness in negative incremental forming. Measurement 131:419–430. https://doi.org/10.1016/j.measurement.2018.08.078

    Article  Google Scholar 

  229. Mulay A, Ben BS, Ismail S, Kocanda A (2019) Prediction of average surface roughness and formability in single point incremental forming using artificial neural network. Arch Civ Mech Eng 19:1135–1149. https://doi.org/10.1016/j.acme.2019.06.004

    Article  Google Scholar 

  230. Gandla PK, Inturi V, Kurra S, Radhika S (2020) Evaluation of surface roughness in incremental forming using image processing based methods. Measurement 164:108055. https://doi.org/10.1016/j.measurement.2020.108055

    Article  Google Scholar 

  231. Taherkhani A, Basti A, Nariman-Zadeh N, Jamali A (2019) Achieving maximum dimensional accuracy and surface quality at the shortest possible time in single-point incremental forming via multi-objective optimization. P I Mech Eng B-J Eng 233:900–913. https://doi.org/10.1177/0954405418755822

    Article  Google Scholar 

  232. Wang Z, Cai S, Chen J (2020) Experimental investigations on friction stir assisted single point incremental forming of low-ductility aluminum alloy sheet for higher formability with reasonable surface quality. J Mater Process Technol 277:116488. https://doi.org/10.1016/j.jmatprotec.2019.116488

    Article  Google Scholar 

  233. Bhattacharya A, Maneesh K, Reddy NV, Cao J (2011) Formability and surface finish studies in singie point incremental forming. J Manuf Sci E- T ASME 133

  234. Kurra S, Hifzur Rahman N, Regalla SP, Gupta AK (2015) Modeling and optimization of surface roughness in single point incremental forming process. J Mater Res Technol 4:304–313. https://doi.org/10.1016/j.jmrt.2015.01.003

    Article  Google Scholar 

  235. Fiorentino A, Marzi R, Ceretti E (2012) Preliminary results on Ti incremental sheet forming (ISF) of biomedical devices: biocompatibility, surface finishing and treatment. Int J Mechatron Manuf Syst 5:36–45

    Google Scholar 

  236. Liu Z, Liu S, Li Y, Meehan PA (2014) Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function. Mater Manuf Process 29:808–818. https://doi.org/10.1080/10426914.2013.864405

    Article  Google Scholar 

  237. Hamilton K, Jeswiet J (2010) Visual categorization and quantification of the orange peel effect in single point incremental forming at high forming speeds. Trans NAMRI/SME 38:679–686

    Google Scholar 

  238. Echrif SBM, Hrairi M (2014) Significant parameters for the surface roughness in incremental forming process. Mater Manuf Process 29:697–703. https://doi.org/10.1080/10426914.2014.901519

    Article  Google Scholar 

  239. Radu MC, Cristea I (2013) Processing metal sheets by SPIF and analysis of parts quality. Mater Manuf Process 28:287–293. https://doi.org/10.1080/10426914.2012.746702

    Article  Google Scholar 

  240. Maji K, Kumar G (2020) Inverse analysis and multi-objective optimization of single-point incremental forming of AA5083 aluminum alloy sheet. Soft Comput 24:4505–4521. https://doi.org/10.1007/s00500-019-04211-z

    Article  Google Scholar 

  241. Milutinović M, Lendjel R, Baloš S, Zlatanović DL, Sevšek L, Pepelnjak T (2021) Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. J Mater Res Technol 10:605–623. https://doi.org/10.1016/j.jmrt.2020.12.014

    Article  Google Scholar 

  242. Mishra S, Yazar KU, More AM, Kumar L, Lingam R, Reddy NV, Prakash O, Suwas S (2020) Elucidating the deformation modes in incremental sheet forming process: insights from crystallographic texture, microstructure and mechanical properties. Mater Sci Eng A 790:139311. https://doi.org/10.1016/j.msea.2020.139311

    Article  Google Scholar 

  243. Wei H, Hussain G, Heidarshenas B, Alkahtani M (2020) Post-forming mechanical properties of a polymer sheet processed by incremental sheet forming: insights into effects of plastic strain, and orientation and size of specimen. Polymers-Basel. 12. https://doi.org/10.3390/polym12091870

  244. Zhang P, Li J, Chen M (2020) Effect of different temperatures on the metallographic structure and tensile property of 2024–T4 alloy in integral heating single point incremental forming. Microsc Res Technol 83:920–927. https://doi.org/10.1002/jemt.23485

    Article  Google Scholar 

  245. Li Y, Chen X, Zhai W, Wang L, Li J, Guoqun Z (2018) Effects of process parameters on thickness thinning and mechanical properties of the formed parts in incremental sheet forming. Int J Adv Manuf Technol 98:3071–3080. https://doi.org/10.1007/s00170-018-2469-9

    Article  Google Scholar 

  246. Liu Z (2017) Friction stir incremental forming of AA7075-O sheets: investigation on process feasibility. Procedia Eng 207:783–788. https://doi.org/10.1016/j.proeng.2017.10.829

    Article  Google Scholar 

  247. Qiaoxin Z, Guohao L, Zhaobing L, Anguo Z, Xinhong X, Yongjie L (2018) Friction stir incremental forming of AA7075-O sheets: experimental investigations on performance evaluation of formed parts. Rare Metal Mater Eng 47:3659–3665. https://doi.org/10.1016/S1875-5372(19)30014-1

    Article  Google Scholar 

  248. Ilyas M, Hussain G, Rashid H, Alkahtani M (2020) Influence of forming parameters on the mechanical behavior of a thin aluminum sheet processed through single point incremental forming. Metals-Basel 10:1461. https://doi.org/10.3390/met10111461

    Article  Google Scholar 

  249. Hussain G, Ilyas M, Lemopi Isidore BB, Khan WA (2020) Mechanical properties and microstructure evolution in incremental forming of AA5754 and AA6061 aluminum alloys. Trans Nonferrous Metal Soc 30:51–64. https://doi.org/10.1016/S1003-6326(19)65179-4

    Article  Google Scholar 

  250. Wang H, Gu Y, Guo X, Wang H, Tao J, Xu Y (2018) Microstructure and mechanical properties of 2060–T8 Al-Li alloy after warm incremental forming. J Mech Sci Technol 32:4801–4812. https://doi.org/10.1007/s12206-018-0927-9

    Article  Google Scholar 

  251. Guo X, Guo X, Gu Y, Gu Y, Wang H, Wang H, Jin K, Jin K, Tao J, Tao J (2018) The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incremental forming process. Int J Adv Manuf Technol 94:1387–1396. https://doi.org/10.1007/s00170-017-0965-y

    Article  Google Scholar 

  252. Xu R, Shi X, Xu D, Malhotra R, Cao J (2014) A preliminary study on the fatigue behavior of sheet metal parts formed with accumulative-double-sided incremental forming. Manuf Lett 2:8–11. https://doi.org/10.1016/j.mfglet.2013.10.009

    Article  Google Scholar 

  253. Emmens WC, Hirt G, Tekkaya AE, van den Boogaard AH (2011) Formability in incremental sheet forming and cyclic stretch-bending. Steel Res Int special:513–518

  254. Agrawa A, Ziegert J, Smith S, Woody B, Cao J (2012) Study of dimensional repeatability and fatigue life for deformation machining bending mode. J Manuf Sci E- T ASME 134

  255. Nirala HK, Agrawal A (2021) Reprint of: Residual stress inclusion in the incrementally formed geometry using Fractal Geometry Based Incremental Toolpath (FGBIT). J Mater Process Technol 287:116623. https://doi.org/10.1016/j.jmatprotec.2020.116623

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Start-up Funds from Wuhan University of Technology and the Fundamental Research Funds for the Central Universities (WUT: 2021-JD-B1-17) for undertaking this work.

Author information

Authors and Affiliations

Authors

Contributions

Zhaobing Liu: methodology, writing—review and editing, supervision, project administration. Kai Cheng: resources, writing—original draft, review, and editing. Kerui Peng: resources, writing—original draft.

Corresponding author

Correspondence to Zhaobing Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This article has not been published or submitted elsewhere.

Consent to participate

The authors consent to participate in this work.

Consent for publication

The authors consent to publish this work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Cheng, K. & Peng, K. Exploring the deformation potential of composite materials processed by incremental sheet forming: a review. Int J Adv Manuf Technol 118, 2099–2137 (2022). https://doi.org/10.1007/s00170-021-08081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08081-4

Keywords

Navigation