Skip to main content

Advertisement

Log in

A comprehensive review on polymer matrix composites: material selection, fabrication, and application

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer matrix composites have always piqued the curiosity of the scientific, technological communities and are being recognized as the best option for a wide range of engineering applications owing to their superior mechanical qualities, namely stiffness and high specific strength. In addition, these materials offer useful design flexibility and comparatively better fatigue and corrosion resistance than many other materials. These are thus recognized as advanced composite materials due to their superior mechanical properties and comparative ease of fabrication. As a result, manufacturers have turned towards these advanced composites for a wide range of applications in a variety of industries. A manufacturer or designer must choose appropriate constituents of a composite for a particular application while considering all the composite’s properties. This stands as one of the main objectives of this review, i.e. to explore various matrices and reinforcement combinations used for different applications taking their properties into accord. This extensive analysis includes a detailed review of certain selective fabrication techniques. In addition to that, polymer matrix composites’ numerous applications in today’s environment are also discussed, as well as the challenges that they pose in diverse contexts. Through this review, researchers will achieve a better understanding of the significance of these materials and their adaptability in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5(1):1446667. https://doi.org/10.1080/23311916.2018.1446667

    Article  Google Scholar 

  2. Friedrich K, Chang L, Haupert F (2011) Current and future applications of polymer composites in the field of tribology. Compos Mater. https://doi.org/10.1007/978-0-85729-166-0_6

    Article  Google Scholar 

  3. Friedrich K, Breuer U (2015) Multifunctionality of polymer composites: challenges and new solutions. William Andrew, Kidlington Oxford, UK

    Google Scholar 

  4. Wang RM, Zheng SR, Zheng YPG (2011) Polymer matrix composites and technology. Woodhead Publishing Limited, Cambridge, UK

    Google Scholar 

  5. Aji IS, Zainudin ES, Abdan K, Sapuan SM, Khairul MD (2013) Mechanical properties and water absorption behaviour of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47(8):979–990. https://doi.org/10.1177/0021998312444147

    Article  CAS  Google Scholar 

  6. Rutkowski JV, Levin BC (1986) Acrylonitrile–butadiene–styrene copolymers (ABS): pyrolysis and combustion products and their toxicity- a review of the literature. Fire Mater 10(3–4):93–105. https://doi.org/10.1002/fam.810100303

    Article  CAS  Google Scholar 

  7. Callister WD Jr, Rethwisch DG (2020) Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons

    Google Scholar 

  8. Campbell FC Jr (2011) Manufacturing technology for aerospace structural materials. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  9. Kainer KU (2006) Basics of metal matrix composites. Metal matrix composites. Wiley, pp 1–54

    Google Scholar 

  10. Xiao L, Lu W, Qin J, Chen Y, Zhang D, Wang M, Zhu F, Ji B (2009) Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite. Compos Sci Technol 69(11–12):1925–1931. https://doi.org/10.1016/j.compscitech.2009.04.009

    Article  CAS  Google Scholar 

  11. Stojanovic B, Glisovic J (2021). Application of ceramic matrix composite in automotive industry. https://doi.org/10.1016/B978-0-12-819724-0.00018-5

    Article  Google Scholar 

  12. Poletti C, Balog M, Schubert T, Liedtke V, Edtmaier C (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Tech 68(9):2171–2177

    CAS  Google Scholar 

  13. U.S. Congress, Office of Technology Assessment (1988) Advanced materials by design, OTAE-351 (Washington, DC: U.S. Government Printing Office). Polymer matrix composites pp.73–95. https://www.princeton.edu/~ota/disk2/1988/8801/880106.PDF

  14. Kainer KU (2006) Custom-made materials for automotive and aerospace engineering. Metal matrix composites. John Wiley & Sons Inc, Hoboken, NJ. https://doi.org/10.1002/3527608117

    Book  Google Scholar 

  15. Wang RM, Zheng SR, Zheng YP (2011) Polymer matrix composites and technology. Elsevier

    Google Scholar 

  16. Even C, Arvieu C, Quenisset JM (2008) Powder route processing of carbon fibres reinforced titanium matrix composites. Comp Sci Tech 68(6):1273–1281. https://doi.org/10.1016/j.compscitech.2007.12.014

    Article  CAS  Google Scholar 

  17. Cyriac A (2011) Metal matrix composites: history, status, factors and future. Graduate College of Oklahoma State University

    Google Scholar 

  18. Callister Jr WD (2007) Materials science and engineering. John Wiley and Sons Inc., New York

    Google Scholar 

  19. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013) Thermal conductivity of polymeric composites: a review. In 2013 IEEE Int Conf on Solid Dielectrics (ICSD) IEEE pp. 678–681

  20. Wang Y, Chen Z, Yu S, Awuye D, Li B, Liao J, Luo R (2017) Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Comp Part B Eng 129:180–186. https://doi.org/10.1016/j.compositesb.2017.07.068

    Article  CAS  Google Scholar 

  21. Talib AAA, Jumahat A, Jawaid M, Sapiai N, Leao AL (2021) Effect of wear conditions, parameters and sliding motions on tribological characteristics of basalt and glass fibre reinforced epoxy composites. Materials 14(3):701. https://doi.org/10.3390/ma14030701

    Article  CAS  Google Scholar 

  22. Campbell FC (2010) Structural composite materials. In: Introduction to composite materials. ASM International, pp 1–18

  23. Sharma AK, Bhandari R, Aherwar A, Rimašauskienė R (2020) Matrix materials used in composites: a comprehensive study. Mater Today Proc 21:1559–1562. https://doi.org/10.1016/j.matpr.2019.11.086

    Article  Google Scholar 

  24. Qu XH, Zhang L, Mao WU, Ren SB (2011) Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress Nat Sci Mater Int 21(3):189–197. https://doi.org/10.1016/S1002-0071(12)60029-X

    Article  Google Scholar 

  25. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63(9):1259–1264

    CAS  Google Scholar 

  26. Mahesh V, Joladarashi S, Kulkarni SM (2021) A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def Technol 17(1):257–277. https://doi.org/10.1016/j.dt.2020.04.002

    Article  Google Scholar 

  27. Wang Z, Xu L, Sun X, Shi M, Liu J (2017) Fatigue behavior of glass fiber reinforced epoxy composites embedded with shape memory alloy wires. Compos Struct 178:311–319. https://doi.org/10.1016/j.compstruct.2017.07.027

    Article  Google Scholar 

  28. Gupta N, Sano T (2020) Metal and polymer matrix composites. J Mater 2(6):2269–2271. https://doi.org/10.1007/s11837-020-04168-7

    Article  Google Scholar 

  29. Begley MR, Gianola DS, Ray TR (2019) Bridging functional nanocomposites to robust macroscale devices. Sci 364:6447. https://doi.org/10.1126/science.aav4299

    Article  CAS  Google Scholar 

  30. Rajan VS, Govindaraju M, Ramu M, Satheeshkumar V (2020) Influence of metal foam properties on performance of polymer composite spur gear. Mater Today Proc 24:1244–1250. https://doi.org/10.1016/j.matpr.2020.04.439

    Article  CAS  Google Scholar 

  31. Ramanathan A, Krishnan PK, Muraliraja R (2019) A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J Manuf Process 42:213–245. https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  32. Sam M, Jojith R, Radhika N (2021) Progression in manufacturing of functionally graded materials and impact of thermal treatment- a critical review. J Manuf Process 68:1339–1377. https://doi.org/10.1016/j.jmapro.2021.06.062

    Article  Google Scholar 

  33. Brechtl J, Li Y, Li K, Kearney L, Nawaz K, Flores-Betancourt A, Thompson M, Rios O, Momen AM (2021) Structural, thermal, and mechanical characterization of a thermally conductive polymer composite for heat exchanger applications. Polymers 13(12):1970. https://doi.org/10.3390/polym13121970

    Article  CAS  Google Scholar 

  34. Vishwakarma SK, Pandey P, Gupta NK (2017) Characterization of ABS material: a review. J Res Mech Eng 3(5):13–16

    Google Scholar 

  35. Olivera S, Muralidhara HB, Venkatesh K, Gopalakrishna K, Vivek CS (2016) Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J Mater Sci 51(8):3657–3674. https://doi.org/10.1007/s10853-015-9668-7

    Article  CAS  Google Scholar 

  36. Kamelian FS, Saljoughi E, Shojaee Nasirabadi P, Mousavi SM (2018) Modifications and research potentials of acrylonitrile/butadiene/styrene (ABS) membranes: a review. Polym Compos 39(8):2835–2846. https://doi.org/10.1002/pc.24276

    Article  CAS  Google Scholar 

  37. Manish GD, Sharma S, Akash SM (2018) A Review on testing methods of recycled acrylonitrile butadiene-styrene. Mater Today Proc 5(14):28296–28304. https://doi.org/10.1016/j.matpr.2018.10.113

    Article  CAS  Google Scholar 

  38. Vidakis N, Petousis M, Maniadi A, Koudoumas E, Vairis A, Kechagias J (2020) Sustainable additive manufacturing: mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 12(9):3568. https://doi.org/10.3390/su12093568

    Article  CAS  Google Scholar 

  39. Haghdan S, Smith GD (2015) Natural fiber reinforced polyester composites: a literature review. J Reinf Plast Compos 34(14):1179–1190. https://doi.org/10.1177/0731684415588938

    Article  CAS  Google Scholar 

  40. Rouison D, Couturier M, Sain M, MacMillan B, Balcom BJ (2005) Water absorption of hemp fiber/unsaturated polyester composites. Polym Compos 26(4):509–525. https://doi.org/10.1002/pc.20114

    Article  CAS  Google Scholar 

  41. Mohd Nurazzi N, Khalina A, Sapuan SM, Dayang Laila AHAM, Rahmah M, Hanafee Z (2017) A review: fibres, polymer matrices and composites. Pertanika J Sci Technol 25(4):1085–1102

    Google Scholar 

  42. Skrifvars M (2000) Synthetic modification and characterisation of unsaturated polyesters. Helsinki, Finland

    Google Scholar 

  43. Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int 54(1):11–35. https://doi.org/10.1002/pi.1663

    Article  CAS  Google Scholar 

  44. Sanadi AR, Prasad SV, Rohatgi PK (1986) Sunhemp fibre-reinforced polyester. J Mater Sci 21(12):4299–4304. https://doi.org/10.1007/BF01106545

    Article  CAS  Google Scholar 

  45. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019

    Article  CAS  Google Scholar 

  46. Dinakaran K, Ramesh H, Joseph AD, Murugan R, Jothi S (2019) Development and characterization of areca fiber reinforced polymer composite. Mater Today Proc 18:934–940. https://doi.org/10.1016/j.matpr.2019.06.528

    Article  CAS  Google Scholar 

  47. Venoor V, Park JH, Kazmer DO, Sobkowicz MJ (2021) Understanding the effect of water in polyamides: a review. Polym Rev 61(3):598–645. https://doi.org/10.1080/15583724.2020.1855196

    Article  CAS  Google Scholar 

  48. Heitner HI (1994) Encyclopedia of chemical technology, 4th edn. In: Howe-Grant M (ed) Kroschwitz JI. John Wiley & Sons, pp 11–61

    Google Scholar 

  49. Trigo-López M, García JM, Ruiz JAR, García FC, Ferrer R (2002) Aromatic polyamides-encyclopedia of polymer science and technology. John Wiley & Sons, Inc, pp 1–51. https://doi.org/10.1002/0471440264.pst249.pub2

    Book  Google Scholar 

  50. US Federal Trade Commission (1995) The textile fiber products identification act, 16 CFR Part 303.7. Federal Register 60:234

  51. Desio GP (1996) Characterization and properties of polyphthalamide/polyamide blends and polyphthalamide/polyamide/polyolefin blends. J Vinyl Addit Technol 2(3):229–234. https://doi.org/10.1002/vnl.10131

    Article  CAS  Google Scholar 

  52. Marchildon K (2011) Polyamides–still strong after seventy years. Macromol React Eng 5(1):22–54. https://doi.org/10.1002/mren.201000017

    Article  CAS  Google Scholar 

  53. Holmes DR, Bunn CW, Smith DJ (1955) The crystal structure of polycaproamide: nylon 6. J Polym Sci 17(84):159–177. https://doi.org/10.1002/pol.1955.120178401

    Article  CAS  Google Scholar 

  54. Kaya E (2009) Investigation of the relationship between polymer structures and thermal, mechanical, viscoelastic properties. The University of Southern Mississippi

    Google Scholar 

  55. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  CAS  Google Scholar 

  56. Choy IC, Plazek DJ (1986) The physical properties of bisphenol-A-based epoxy resins during and after curing. Polym Sci B Polym Phys 24(6):1303–1320. https://doi.org/10.1002/polb.1986.090240609

    Article  CAS  Google Scholar 

  57. May C (ed) (2018) Epoxy resins: chemistry and technology. Routledge. https://doi.org/10.1002/pol.1988.140261212

    Book  Google Scholar 

  58. Ahmadi Z (2019) Nanostructured epoxy adhesives: a review. Prog Org Coat 135:449–453. https://doi.org/10.1016/j.porgcoat.2019.06.028

    Article  CAS  Google Scholar 

  59. Jayan JS, Saritha A, Joseph K (2018) Innovative materials of this era for toughening the epoxy matrix: a review. Polym Compos 39(S4):E1959–E1986. https://doi.org/10.1002/pc.24789

    Article  CAS  Google Scholar 

  60. Park SJ, Jin FL, Lee C (2005) Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater Sci Eng A 402(1–2):335–340. https://doi.org/10.1016/j.msea.2005.05.015

    Article  CAS  Google Scholar 

  61. Jin FL, Park SJ (2006) Thermal properties and toughness performance of hyper branched-polyimide-modified epoxy resins. Polym Sci B Polym Phys 44(23):3348–3356. https://doi.org/10.1002/polb.20990

    Article  CAS  Google Scholar 

  62. Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, Nahm S (2010) Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J 46(5):1158–1162. https://doi.org/10.1016/j.eurpolymj.2010.02.001

    Article  CAS  Google Scholar 

  63. Liu W, Wang Z (2011) Silicon-containing cycloaliphatic epoxy resins with systematically varied functionalities: synthesis and structure/property relationships. Macromol Chem Phys 212(9):926–936. https://doi.org/10.1002/macp.201000779

    Article  CAS  Google Scholar 

  64. Park SJ, Kim TJ, Lee JR (2000) Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. Polym Sci B Polym Phys 38(16):2114–2123. https://doi.org/10.1002/1099-0488(20000815)38:16%3C2114::AID-POLB50%3E3.0.CO;2-8

    Article  CAS  Google Scholar 

  65. Kwak GH, Park SJ, Lee JR (2000) Thermal stability and mechanical behavior of cycloaliphatic–DGEBA epoxy blend system initiated by cationic latent catalyst. J Appl Polym Sci 78(2):290–297. https://doi.org/10.1002/1097-4628(20001010)78:2%3c290::AID-APP80%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  66. Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478(1–2):402–405. https://doi.org/10.1016/j.msea.2007.05.053

    Article  CAS  Google Scholar 

  67. Lee MC, Ho TH, Wang CS (1996) Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J Appl Polym Sci 62(1):217–225. https://doi.org/10.1002/(SICI)1097-4628(19961003)62:1%3C217::AID-APP25%3E3.0.CO;2-0

    Article  CAS  Google Scholar 

  68. Guo B, Jia D, Fu W, Qiu Q (2003) Hygrothermal stability of dicyanate-novolac epoxy resin blends. Polym Degrad Stab 79(3):521–528. https://doi.org/10.1016/S0141-3910(02)00368-3

    Article  CAS  Google Scholar 

  69. Park SJ, Seo MK, Lee JR (2000) Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J Polym Sci A Polym Chem 38(16):2945–2956. https://doi.org/10.1002/1099-0518(20000815)38:16%3C2945::AID-POLA120%3E3.0.CO;2-6

    Article  CAS  Google Scholar 

  70. Hu YS, Prattipati V, Mehta S, Schiraldi DA, Hiltner A, Baer E (2005) Improving gas barrier of PET by blending with aromatic polyamides. Polym 46(8):2685–2698. https://doi.org/10.1016/j.polymer.2005.01.056

    Article  CAS  Google Scholar 

  71. Mendiburu-Valor E, Mondragon G, González N, Kortaberria G, Eceiza A, Peña-Rodriguez C (2021) Improving the efficiency for the production of bis-(2-Hydroxyethyl) terephtalate (BHET) from the glycolysis reaction of poly ethylene terephtalate (PET) in a pressure reactor. Polym 13(9):1461. https://doi.org/10.3390/polym13091461

    Article  CAS  Google Scholar 

  72. Nisticò R (2020) Polyethylene terephthalate (PET) in the packaging industry. Polym Test 90:106707. https://doi.org/10.1016/j.polymertesting.2020.106707

    Article  CAS  Google Scholar 

  73. Ke Y, Long C, Qi Z (1999) Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci 71(7):1139–1146. https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7%3C1139::AID-APP12%3E3.0.CO;2-E

    Article  CAS  Google Scholar 

  74. Chang JH, Mun MK, Lee IC (2005) Poly(ethylene terephthalate) nanocomposite fibers by in situ polymerization: the thermomechanical properties and morphology. J Appl Polym Sci 98(5):2009–2016. https://doi.org/10.1002/app.22382

    Article  CAS  Google Scholar 

  75. Bizarria MT, Giraldi AL, de Carvalho CM, Velasco JI, d’Avila MA, Mei LH (2007) Morphology and thermomechanical properties of recycled PET–organoclay nanocomposites. J Appl Polym Sci 104(3):1839–1844. https://doi.org/10.1002/app.25836

    Article  CAS  Google Scholar 

  76. Visakh PM (2015) Polyethylene terephthalate: blends, composites, and nanocomposites–state of art, new challenges, and opportunities. PET Blend Comp Nanocomp. https://doi.org/10.1016/B978-0-323-31306-3.00001-4

    Article  Google Scholar 

  77. Letcher T, Rankouhi B, Javadpour S (2015) Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters. In ASME Int Mech Eng Congress Expo 57359:V02AT02A018. American Society of Mechanical Engineers

  78. Praseetha S, BT M, Anusuya S (2019) Storage and security Issues of medical Images using cloud platform C. Server meant for Security. Int J Innov Technol Explor Eng 8(12):977–980

    Google Scholar 

  79. Djukic S, Bocahut A, Bikard J, Long DR (2020) Mechanical properties of amorphous and semi-crystalline semi-aromatic polyamides. Heliyon 6(4):e03857. https://doi.org/10.1016/j.heliyon.2020.e03857

    Article  Google Scholar 

  80. Xiao W, Yu H, Han K, Yu M (2005) Study on PET fiber modified by nanomaterials: improvement of dimensional thermal stability of PET fiber by forming PET/MMT nanocomposites. J Appl Polym Sci 96(6):2247–2252. https://doi.org/10.1002/app.21703

    Article  CAS  Google Scholar 

  81. Daramola OO, Akintayo OS (2017) Mechanical properties of epoxy matrix composites reinforced with green silica particles. Ann Fac Eng Hunedoara 15(4):167–174

    CAS  Google Scholar 

  82. Fernandes AC, Del Vecchio CJM, Castro GAV (1999) Mechanical properties of polyester mooring cables. Int J Offshore Polar Eng 9:03

    Google Scholar 

  83. Kiskan B, Yagci Y (2020) The journey of phenolics from the first spark to advanced materials. Isr J Chem 60(1–2):20–32. https://doi.org/10.1002/ijch.201900086

    Article  CAS  Google Scholar 

  84. Pilato L (2010) Resin chemistry. Phenolic resins: a century of progress, Berlin, Heidelberg, pp 41–91. https://doi.org/10.1007/978-3-642-04714-5_4

    Book  Google Scholar 

  85. Mohd Nurazzi N, Khalina A, Sapuan SM, Dayang Laila AH, Rahmah M, Hanafee Z (2017) A Review: fibres, polymer matrices and composites. J Sci Technol 25(4):1085–1102

    Google Scholar 

  86. Yang W, Jiao L, Wang X, Wu W, Lian H, Dai H (2021) Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int J Biol Macromol 166:1312–1319. https://doi.org/10.1016/j.ijbiomac.2020.11.012

    Article  CAS  Google Scholar 

  87. Zhou J, Yao Z, Chen Y, Wei D, Wu Y, Xu T (2013) Mechanical and thermal properties of graphene oxide/phenolic resin composite. Polym Compos 34(8):1245–1249. https://doi.org/10.1002/pc.22533

    Article  CAS  Google Scholar 

  88. Reghunadhan A, Thomas S (2017) Polyurethanes: structure, properties, synthesis, characterization, and applications. PUR Polym. https://doi.org/10.1016/B978-0-12-804039-3.00001-4

    Article  Google Scholar 

  89. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004

    Article  CAS  Google Scholar 

  90. Akindoyo JO, Beg MD, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482. https://doi.org/10.1039/C6RA14525F

    Article  CAS  Google Scholar 

  91. Gadhave RV, Srivastava S, Mahanwar PA, Gadekar PT (2019) Recycling and disposal methods for polyurethane wastes: a review. Open J Polym Chem 9(2):39–51. https://doi.org/10.4236/ojpchem.2019.92004

    Article  CAS  Google Scholar 

  92. Haponiuk JT, Formela K (2017) PU polymers, their composites, and nanocomposites: state of the art and new challenges. PUR Polym. https://doi.org/10.1016/B978-0-12-804065-2.00001-2

    Article  Google Scholar 

  93. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22. https://doi.org/10.1016/j.jiec.2017.03.036

    Article  CAS  Google Scholar 

  94. Lin Q, Qu L, Lü Q, Fang C (2013) Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym Test 32(2):330–337. https://doi.org/10.1016/j.polymertesting.2012.11.014

    Article  CAS  Google Scholar 

  95. Hamerton I, Hay JN (1998) Recent technological developments in cyanate ester resins. High Perform Polym 10(2):163–174. https://doi.org/10.1088/0954-0083/10/2/001

    Article  CAS  Google Scholar 

  96. Nair CR, Mathew D, Ninan KN (2001) Cyanate ester resins, recent developments. New polymerization techniques and synthetic methodologies. Adv Polym Sci. https://doi.org/10.1007/3-540-44473-4_1

    Article  Google Scholar 

  97. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Exp Polym Lett 9(5):435–455. https://doi.org/10.3144/expresspolymlett.2015.42

    Article  CAS  Google Scholar 

  98. Chang BP, Mohanty AK, Misra M (2020) Studies on durability of sustainable biobased composites: a review. RSC Adv 10(31):17955–17999. https://doi.org/10.1039/C9RA09554C

    Article  CAS  Google Scholar 

  99. Andrady AL, Pandey KK, Heikkilä AM (2019) Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 18(3):804–825. https://doi.org/10.1039/C8PP90065E

    Article  CAS  Google Scholar 

  100. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustainable Chem Eng 4(6):2899–2916

    CAS  Google Scholar 

  101. Fang C, Zhang J, Chen X, Weng GJ (2019) A monte carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 146:125–138. https://doi.org/10.1016/j.carbon.2019.01.098

    Article  CAS  Google Scholar 

  102. Abidin MSZ, Herceg T, Greenhalgh ES, Shaffer M, Bismarck A (2019) Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Compos Sci Technol 170:85–92. https://doi.org/10.1016/j.compscitech.2018.11.017

    Article  CAS  Google Scholar 

  103. Hemath M, Mavinkere Rangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41(10):3940–3965. https://doi.org/10.1002/pc.25703

    Article  CAS  Google Scholar 

  104. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Progress in Polym Sci 33(8):820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  105. Vink ET, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11(3):167–180. https://doi.org/10.1089/ind.2015.0003

    Article  CAS  Google Scholar 

  106. Murariu M, Dechief AL, Paint Y, Berlier K, Bonnaud L, Dubois P (2008) The green challenge: high performance PLA (nano) composites. Jec comp magazine 45:66–69

    Google Scholar 

  107. Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, Asyraf MRM et al (2021) Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers 13(8):1326. https://doi.org/10.3390/polym13081326

    Article  CAS  Google Scholar 

  108. Jojith R, Sam M, Radhika N (2021) Recent advances in tribological behavior of functionally graded composites: a review. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2021.05.003

    Article  Google Scholar 

  109. Sathish M, Radhika N, Saleh B (2021) A critical review on functionally graded coatings: methods, properties, and challenges. Compos B Eng 225:109278. https://doi.org/10.1016/j.compositesb.2021.109278

    Article  CAS  Google Scholar 

  110. Radhika N, Thirumalini S, Shivashankar A (2018) Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper/SiC metal matrix composite. Trans Indian Inst Met 71(6):1311–1322. https://doi.org/10.1007/s12666-017-1246-z

    Article  CAS  Google Scholar 

  111. Ponsuriyaprakash S, Udhayakumar P, Pandiyarajan R (2020) Experimental investigation of abs matrix and cellulose fiber reinforced polymer composite materials. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1841065

    Article  Google Scholar 

  112. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol 8(6):6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068

    Article  CAS  Google Scholar 

  113. Dong YX, Wang Q, Yang CY, Xu WZ, Zhou S, Liu DS, Tian JH (2019) Effect of process parameters on mechanical properties of carbon fiber reinforced abs composites. Key Eng Mater 815:145–215. https://doi.org/10.4028/www.scientific.net/KEM.815.145

    Article  Google Scholar 

  114. Golub M, Guo X, Jung M, Zhang J (2016) 3D printed ABS and carbon fiber reinforced polymer specimens for engineering education. Springer, Cham, pp 281–285. https://doi.org/10.1007/978-3-319-48768-7_43

    Book  Google Scholar 

  115. Sharma V, Goyal M, Jindal P (2017) Preparation, characterization and study of mechanical properties of graphene/ABS nano-composites. Ind J Sci and Tech 10(17):1–5. https://doi.org/10.17485/ijst/2017/v10i17/114414

    Article  CAS  Google Scholar 

  116. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  117. Mura A, Adamo F, Wang H, Leong WS, Ji X, Kong J (2019) Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribology Int 134:335–340. https://doi.org/10.1016/j.triboint.2019.02.017

    Article  CAS  Google Scholar 

  118. Gaitonde VN, Karnik SR, Mata F, Davim JP (2009) Study on some aspects of machinability in unreinforced and reinforced polyamides. J Compos Mater 43(7):725–739. https://doi.org/10.1177/0021998309101298

    Article  CAS  Google Scholar 

  119. Yoshihara N (2006) Adjusting the lengths of glass fibers and the relationship between fiber length and mechanical properties for reinforced polyethylene terephthalate. J polym eng 26(6):547–564. https://doi.org/10.1515/POLYENG.2006.26.6.547

    Article  Google Scholar 

  120. https://matmatch.com/materials/mbas197-polyethylene-terephthalate-reinforced-with-15-glass-fibers-pet-gf15-

  121. Wang D, Liu Q, Wang Y, Li M, Liu K, Chen J, Qing X (2015) Reinforcement of polyethylene terephthalate via addition of carbon-based materials. Poly (Ethylene Terephthalate) based blends. William Andrew Publishing, Comp and Nanocomp, pp 41–64. https://doi.org/10.1016/B978-0-323-31306-3.00003-8

    Chapter  Google Scholar 

  122. Shabafrooz V, Bandla S, Allahkarami M, Hanan JC (2018) Graphene/polyethylene terephthalate nanocomposites with enhanced mechanical and thermal properties. J Polym Res 12:1–2. https://doi.org/10.1007/s10965-018-1621-4

    Article  CAS  Google Scholar 

  123. Al-Harthi MA, Bahuleyan BK (2018) Mechanical properties of polyethylene-carbon nanotube composites synthesized by in situ polymerization using metallocene catalysts. Adv Mater Sci. https://doi.org/10.1155/2018/4057282

    Article  Google Scholar 

  124. Xu A, Wang Y, Xu X, Xiao Z, Liu R (2020) A clean and sustainable cellulose-based composite film reinforced with waste plastic polyethylene terephthalate. Adv Mater Sci Eng. https://doi.org/10.1155/2020/7323521

    Article  Google Scholar 

  125. Krishnasamy S, Thiagamani SMK, Kumar CM, Nagarajan R, Shahroze RM, Siengchin S, MP ID (2019) Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int J Biol Macromol 141:1–13. https://doi.org/10.1016/j.ijbiomac.2019.08.231

    Article  CAS  Google Scholar 

  126. Shanavas S (2014) Mechanical characterization of carbon fibre reinforced epoxy composite. Int J Eng Res Technol 03:01

    Google Scholar 

  127. Batabyal A, Nayak RK, Tripathy S (2018) Evaluation of mechanical properties of glass fibre and carbon fibre reinforced polymer composite. J Commun Eng Syst 8(2):66–74

    Google Scholar 

  128. Berhanuddin NI, Zaman I, Rozlan SA, Karim MA, Manshoor B, Khalid A, Chan SW, Meng Q (2017) Enhancement of mechanical properties of epoxy/graphene nanocomposite. J Phys Conf Ser 914(1):012036

    Google Scholar 

  129. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10. https://doi.org/10.1016/j.cplett.2012.02.006

    Article  CAS  Google Scholar 

  130. Mutalikdesai S, Hadapad A, Patole S, Hatti G (2018) Fabrication and mechanical characterization of glass fibre reinforced epoxy hybrid composites using fly ash/nano clay/zinc oxide as filler. IOP Conf Ser Mater Sci Eng (Discontin) 376(1):012061

    Google Scholar 

  131. Reddy S P, Rao P C S, Reddy A C, Parmeswar G (2014) Tensile and flexural strength of glass fiber epoxy composites. Int Conf Adv Mater Manuf Technol

  132. El-Wazery MS, El-Elamy MI, Zoalfakar SH (2017) Mechanical properties of glass fiber reinforced polyester composites. Int J Appl Sci 14(3):121–131

    Google Scholar 

  133. Sakin R, Ay I, Yaman R (2008) An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials. Mater Des 29(1):212–217. https://doi.org/10.1016/j.matdes.2006.11.006

    Article  CAS  Google Scholar 

  134. Pickering KL, Efendy MA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Comp Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  135. Nurazzi NM, Harussani MM, Aisyah HA, Ilyas RA, Norrrahim MNF, Khalina A, Abdullah N (2021) Treatments of natural fiber as reinforcement in polymer composites—a short review. Funct Comp Struct 3(2):024002. https://doi.org/10.1088/2631-6331/abff36

    Article  CAS  Google Scholar 

  136. Mahmud S, Hasan KF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci. https://doi.org/10.1007/s10853-021-05774-9

    Article  Google Scholar 

  137. Hasan KF, Horváth PG, Bak M, Alpár T (2021) A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances 11(18):10548–10571. https://www.researchgate.net/publication/350018366

  138. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber polym 12(7):919–926. https://doi.org/10.1007/s12221-011-0919-1

    Article  CAS  Google Scholar 

  139. Aliotta L, Gigante V, Coltelli MB, Cinelli P, Lazzeri A, Seggiani M (2019) Thermo-mechanical properties of PLA/short flax fiber biocomposites. Appl Sci 9(18):3797. https://doi.org/10.3390/app9183797

    Article  CAS  Google Scholar 

  140. More AP (2021) Flax fiber–based polymer composites: a review. Adv Comp Hy Mater. https://doi.org/10.1007/s42114-021-00246-9

    Article  Google Scholar 

  141. Naveen J, Jawaid M, Amuthakkannan P, Chandrasekar M (2019) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 427–440. https://doi.org/10.1016/B978-0-08-102292-4.00021-7

    Chapter  Google Scholar 

  142. Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber based polymer composites and their applications. Cellulose fibers: Bio-and nano-polym comp. Springer, Berlin, Heidelberg, pp 589–659. https://doi.org/10.1007/978-3-642-17370-7_22

    Chapter  Google Scholar 

  143. Koyanagi J, Ogihara S, Nakatani H, Okabe T, Yoneyama S (2014) Mechanical properties of fiber/matrix interface in polymer matrix composites. Adv Comp Mater 23(5–6):551–570. https://doi.org/10.1080/09243046.2014.915125

    Article  CAS  Google Scholar 

  144. Jesson DA, John FW (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3):321–354. https://doi.org/10.1080/15583724.2012.710288

    Article  CAS  Google Scholar 

  145. Reifsnider KL (1994) Modelling of the interphase in polymer-matrix composite material systems. Comp 25(7):461–469. https://doi.org/10.1016/0010-4361(94)90170-8

    Article  CAS  Google Scholar 

  146. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Mater Sci 57(4):660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  147. Advani SG, Hsiao KT (eds) (2012) Manufacturing techniques for polymer matrix composites (PMCs). Elsevier

    Google Scholar 

  148. Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix cposites reinforced with natural fibers in the green materials world. Eng Sci Technol Int J 19(2):717–736. https://doi.org/10.1016/j.jestch.2015.10.007

    Article  Google Scholar 

  149. Chung DD (2010) Mechanical properties-composite materials: science and applications. Eng Mater Process. https://doi.org/10.1007/978-1-84882-831-5_3

    Article  Google Scholar 

  150. Du Y, Li D, Liu L, Gai G (2018) Recent achievements of self-healing graphene/polymer composites. Polym 10(2):114. https://doi.org/10.3390/polym10020114

    Article  CAS  Google Scholar 

  151. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos B Eng 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.028

    Article  CAS  Google Scholar 

  152. Campbell FC (ed) (2003) Manufacturing processes for advanced composites. Elsevier, UK

    Google Scholar 

  153. Minchenkov K, Vedernikov A, Safonov A, Akhatov I (2021) Thermoplastic pultrusion: a review. Polym 13:180. https://doi.org/10.3390/polym13020180

    Article  CAS  Google Scholar 

  154. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I (2020) Pultruded materials and structures: a review. J Compos Mater 54(26):4081–4117. https://doi.org/10.1177/0021998320922894

    Article  Google Scholar 

  155. Starr TF, Ketel JAAP (2000) Composites and pultrusion: pultrusion for engineers. Woodhead Publishing Limited, England, Cambridge, pp 1–18

    Google Scholar 

  156. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2015) Pultrusion process of natural fibre-reinforced polymer composites. Manufacturing of Natural Fibre Reinforced Polymer Compossites. Springer, pp 217–231

    Google Scholar 

  157. Ben G, Shoji A (2005) Pultrusion techniques and evaluations of sandwich beam using phenolic foam composite. Adv Compos Mater 14(3):277–288. https://doi.org/10.1163/1568551054922629

    Article  CAS  Google Scholar 

  158. Bechtold G, Wiedmer S, Friedrich K (2002) Pultrusion of thermoplastic composites-new developments and modelling studies. J Thermoplast Compos Mater 15(5):443–465. https://doi.org/10.1177/0892705702015005202

    Article  Google Scholar 

  159. Xie J, Wang S, Cui Z, Wu J (2019) Process optimization for compression molding of carbon fiber–reinforced thermosetting polymer. Mater 12(15):2430. https://doi.org/10.3390/ma12152430

    Article  CAS  Google Scholar 

  160. Singha AS, Thakur VK (2008) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. Bio Resour 3(4):1173–1186

    Google Scholar 

  161. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039

    Article  CAS  Google Scholar 

  162. Maciel LG, do Carmo MA, Azevedo L, Daguer H, Molognoni L, de Almeida MM, Granato D, Rosso ND (2018) Hibiscus sabdariffa anthocyanins-rich extract: chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem Toxicol 113:187–197. https://doi.org/10.1016/j.fct.2018.01.053

    Article  CAS  Google Scholar 

  163. Song Y, Gandhi U, Sekito T, Vaidya UK, Vallury S, Yang A, Osswald T (2018) CAE method for compression molding of carbon fiber-reinforced thermoplastic composite using bulk materials. Compos Part A Appl Sci 114:388–397. https://doi.org/10.1016/j.compositesa.2018.09.002

    Article  CAS  Google Scholar 

  164. De D, De D, Adhikari B (2004) The effect of grass fiber filler on curing characteristics and mechanical properties of natural rubber. Polym Adv Technol 15(12):708–715. https://doi.org/10.1002/pat.530

    Article  CAS  Google Scholar 

  165. Ismail NF, Sulong AB, Muhamad N, Tholibon D, MdRadzi MK, Wanlbrahim WAS (2015) Review of the compression moulding of natural fiber-reinforced thermoset composites: material processing and characterisations. Pertanika J Trop Agric Sci 38(4):533–547

    Google Scholar 

  166. Park CH, Lee WI (2012) Compression molding in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs). Elsevier, pp 47–94. https://doi.org/10.1533/9780857096258.1.47

    Chapter  Google Scholar 

  167. Zabrocki K, Tiburtius C, Doring J, Richter K, inventors; Bayer AG, assignee (1985) Glass-fiber-reinforced ABS-molding compositions. United States patent US 4,547,533

  168. Advani SG, Hsiao K-T (eds) (2012) Manufacturing techniques for polymer matrix composites (PMCs). Woodhead Publishing Limited, UK

    Google Scholar 

  169. Cansever CC (2007) Effects of injection molding conditions on the mechanical properties of polyamide/glass fiber composites [M.S.–Master of Science]. Middle East Technical University

  170. Sambale AK, Schöneich M, Stommel M (2017) Influence of the processing parameters on the fiber-matrix-interphase in short glass fiber-reinforced thermoplastics. Polym 9(6):221. https://doi.org/10.3390/polym9060221

    Article  CAS  Google Scholar 

  171. Parker G (2001) Encyclopedia of materials: science and technology. In: Encyclopedia of materials: science, pp 3703–3707. hthttp://eprints.soton.ac.uk/id/eprint/259958

  172. Park SJ, Seo MK (2011) Intermolecular force. Interface. Sci Technol 18:1–57. https://doi.org/10.1016/B978-0-12-375049-5.00001-3

    Article  Google Scholar 

  173. Cadei JMC (2003) Fatigue of FRP composites in civil engineering applications. Fatigue in Composites. Elsevier, pp 658–685

    Google Scholar 

  174. Ravichandran M, Balasubramanian M, Chairman CA, Pritima D, Dhinakaran V, Stalin B (2020) Recent developments in polymer matrix composites–a review. IOP Conf Series: Mater Sci and Eng 988(1):012096. https://doi.org/10.1088/1757-899X/988/1/012096

    Article  CAS  Google Scholar 

  175. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128. https://doi.org/10.1007/s10443-012-9258-7

    Article  CAS  Google Scholar 

  176. Srivastava V, Srivastava R (2013) Advances in automotive polymer applications and recycling. Int J Innov 2(3):744–746

    Google Scholar 

  177. Namata S (2015) Using polymers as the main material in engine blocks and components. J Appl Mech Eng 4:182

    Google Scholar 

  178. Pradeep SA, Iyer RK, Kazan H, Pilla S (2017) Automotive applications of plastics: past, present, and future. App Plastics Eng Handbook pp.651–673. Doi: https://doi.org/10.1016/B978-0-323-39040-8.00031-6

  179. Mann D (1999) Automotive plastics and composites: worldwide markets and trends to 2007. Elsevier

    Google Scholar 

  180. Lyu MY, Choi TG (2015) Research trends in polymer materials for use in lightweight vehicles. Int J Precis 16(1):213–220. https://doi.org/10.1007/s12541-015-0029-x

    Article  Google Scholar 

  181. Munde YS, Ingle RB, Siva I (2018) Investigation to appraise the vibration and damping characteristics of coir fibre reinforced polypropylene composites. Adv Mater Process Technol 4(4):639–650. https://doi.org/10.1080/2374068X.2018.1488798

    Article  Google Scholar 

  182. Verma D, Gope PC, Shandilya A, Gupta A, Maheshwari MK (2013) Coir fiber reinforcement and application in polymer composites. J Mater Environ Sci 4(2):263–276

    CAS  Google Scholar 

  183. Solazzi L, Buffoli A (2019) Telescopic hydraulic cylinder made of composite material. App Compos Mater 26(4):1189–1206. https://doi.org/10.1007/s10443-019-09772-8

    Article  CAS  Google Scholar 

  184. Ben Mlik Y, Jaouadi M, Rezig S, Khoffi F, Slah M, Durand B (2018) Kenaf fibre-reinforced polyester composites: flexural characterization and statistical analysis. J Text Inst 109(6):713–722. https://doi.org/10.1080/00405000.2017.1365580

    Article  CAS  Google Scholar 

  185. Huang K, Kureemun U, Teo WS, Lee HP (2018) Vibroacoustic behavior and noise control of flax fiber-reinforced polypropylene composites. J Nat Fibers. https://doi.org/10.1080/15440478.2018.1433096

    Article  Google Scholar 

  186. Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber-based polymer composites and their applications. Cellulose Fibers: Bio and Nano-polymer Composites. Springer, pp 589–659. https://doi.org/10.1007/978-3-642-17370-7_22

    Chapter  Google Scholar 

  187. Masuelli MA (2013) Introduction of fibre-reinforced polymers–polymers and composites: concepts, properties and processes. Fiber Reinf Polym Techno Appl Concrete Repair. https://doi.org/10.5772/54629

    Article  Google Scholar 

  188. Shinde NG, Patel DM (2020) A short review on automobile dashboard materials. In IOP Conf Ser Mater Sci Eng 810(1):012033. https://doi.org/10.1088/1757-899X/810/1/012033

    Article  Google Scholar 

  189. Mair-Bauernfeind C, Zimek M, Asada R, Bauernfeind D, Baumgartner RJ, Stern T (2020) Prospective sustainability assessment: the case of wood in automotive applications. Int J Life Cycle Assess 25(10):2027–2049. https://doi.org/10.1007/s11367-020-01803-y

    Article  Google Scholar 

  190. Fekete JR, Hall JN (2017) Design of auto body: materials perspective. Automotive Steels. Elsevier, pp 1–18. https://doi.org/10.1016/B978-0-08-100638-2.00001-8

    Chapter  Google Scholar 

  191. Gand AK, Chan TM, Mottram JT (2013) Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review. Front Struct Civ Eng 7(3):227–244. https://doi.org/10.1007/s11709-013-0216-8

    Article  Google Scholar 

  192. Abdel-Fattah H, El-Hawary MM (1999) Flexural behavior of polymer concrete. Constr Build Mater 13(5):253–262. https://doi.org/10.1016/S0950-0618(99)00030-6

    Article  Google Scholar 

  193. Jo BW, Park SK, Kim DK (2008) Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr Build Mater 22(1):14–20. https://doi.org/10.1016/j.conbuildmat.2007.02.009

    Article  Google Scholar 

  194. Barbuta M, Diaconescu RM, Harja M (2012) Using neural networks for prediction of properties of polymer concrete with fly ash. J Mater Civ Eng 24(5):523–528. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000413

    Article  CAS  Google Scholar 

  195. Giusca R, Corobceanu V (2010) New technologies for strengthening damaged reinforced concrete structures. Curr Sci 96(6):829–833

    Google Scholar 

  196. Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civ Eng 22(7):696–701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069

    Article  CAS  Google Scholar 

  197. Rajkumar A, Madhavaraj K, Umapathy U (2016) Behaviour of concrete filled pvc plastic tubes (CFPT) placed in columns. Int J Eng Res Technol 4:25

    Google Scholar 

  198. Frollini E, Silva CG, Ramires EC (2013) Phenolic resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. Advanced FRP Composites for Structural Applications. Elsevier, pp 7–43

    Google Scholar 

  199. Choi MH, Jeon BH, Chung IJ (2000) The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer 41(9):3243–3252. https://doi.org/10.1016/S0032-3861(99)00532-7

    Article  CAS  Google Scholar 

  200. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  201. Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press

    Google Scholar 

  202. Pj JF, Arun KJ, Navas AA, Joseph I (2018) Biomedical applications of polymers—an overview. Macromolecules 28(4):939–944. https://doi.org/10.19080/CTBEB.2018.15.555909

    Article  Google Scholar 

  203. Bernacca GM, O’Connor B, Williams DF, Wheatley DJ (2002) Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young’s modulus and leaflet thickness. Biomater 23(1):45–50. https://doi.org/10.1016/S0142-9612(01)00077-1

    Article  CAS  Google Scholar 

  204. Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM (2009) Polymeric heart valves: new materials, emerging hopes. Trends Bio Technol 27(6):359–367. https://doi.org/10.1016/j.tibtech.2009.03.002

    Article  CAS  Google Scholar 

  205. Strohbach A, Busch R (2015) Polymers for cardiovascular stent coatings. Int J Polym Sci. https://doi.org/10.1155/2015/782653

    Article  Google Scholar 

  206. Wasyłeczko M, Sikorska W, Chwojnowski A (2020) Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 10(11):348. https://doi.org/10.3390/membranes10110348

    Article  CAS  Google Scholar 

  207. Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater 1(1):3–18

    CAS  Google Scholar 

  208. Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107–120. https://doi.org/10.2217/rme.09.77

    Article  CAS  Google Scholar 

  209. Singha P, Locklin J, Handa H (2017) A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater 50:20–40. https://doi.org/10.1016/j.actbio.2016.11.070

    Article  CAS  Google Scholar 

  210. Venkatesan N, Shroff S, Jayachandran K, Doble M (2010) Polymers as ureteral stents. J Endourol 24(2):191–198

    Google Scholar 

  211. Gavasane AJ, Pawar HA (2014) Synthetic biodegradable polymers used in controlled drug delivery system: an overview. J Clin Pharmacol 3(2):1–7. https://doi.org/10.4172/2167-065X.1000121

    Article  Google Scholar 

  212. Capulli AK, MacQueen LA, Sheehy SP, Parker KK (2016) Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 96:83–102. https://doi.org/10.1016/j.addr.2015.11.020

    Article  CAS  Google Scholar 

  213. Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9(3):5630–5642. https://doi.org/10.1016/j.actbio.2012.10.032

    Article  CAS  Google Scholar 

  214. Gloria A, De Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater 8(2):57–67

    CAS  Google Scholar 

  215. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3):321–330. https://doi.org/10.1016/j.actbio.2007.01.002

    Article  CAS  Google Scholar 

  216. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(3):208–213. https://doi.org/10.1557/mrs2010.653

    Article  CAS  Google Scholar 

  217. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polym 49(7):1885–1891. https://doi.org/10.1016/j.polymer.2008.02.022

    Article  CAS  Google Scholar 

  218. Tang J, Bao L, Li X, Chen L, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3(43):8537–8547. https://doi.org/10.1039/C5TB01144B

    Article  CAS  Google Scholar 

  219. Zhang Y, Broekhuis A, Stuart MC, Picchioni F (2008) Polymeric amines by chemical modifications of alternating aliphatic polyketones. J Appl Polym Sci 107(1):262–271. https://doi.org/10.1002/app.27029

    Article  CAS  Google Scholar 

  220. Zarrintaj P, Ahmadi Z, Saeb MR, Mozafari M (2018) Poloxamer-based stimuli-responsive biomaterials. Mater Today Proc 5(7):15516–15523. https://doi.org/10.1016/j.matpr.2018.04.158

    Article  CAS  Google Scholar 

  221. Yang D, Mosadegh B, Ainla A, Lee B, Khashai F, Suo Z, Whitesides GM (2015) Actuators: buckling of elastomeric beams enables actuation of soft machines. Adv Mater 27(41):6305–6305. https://doi.org/10.1002/adma.201570274

    Article  Google Scholar 

  222. Poole-Warren LA, Patton AJ (2016) Introduction to biomedical polymers and biocompatibility. Biosynthetic polymer for medical applications. Elsevier, pp 3–31. https://doi.org/10.1016/B978-1-78242-105-4.00001-8

    Chapter  Google Scholar 

  223. Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 3(42):8224–8249. https://doi.org/10.1039/C5TB01370D

    Article  CAS  Google Scholar 

  224. Theato P, Sumerlin BS, O’Reilly RK, Epps TH III (2013) Stimuli responsive materials. Chem Soc Rev 42(17):7055–7056. https://doi.org/10.1021/ja510147n

    Article  CAS  Google Scholar 

  225. Muskovich M, Bettinger CJ (2012) Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthcare Mater 1(3):248–266. https://doi.org/10.1002/adhm.201200071

    Article  CAS  Google Scholar 

  226. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137(6):2140–2154. https://doi.org/10.1021/ja510147n

    Article  CAS  Google Scholar 

  227. Chang SY, Cheng P, Li G, Yang Y (2018) Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6):1039–1054. https://doi.org/10.1016/j.joule.2018.04.005

    Article  CAS  Google Scholar 

  228. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6(3):153–161

    CAS  Google Scholar 

  229. Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H (2018) Conjugated polymers for flexible energy harvesting and storage. Adv Mater 30(13):1704261. https://doi.org/10.1002/adma.201704261

    Article  CAS  Google Scholar 

  230. Han M, Wang H, Yang Y (2019) Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2:26–35. https://doi.org/10.1038/s41928-018-0189-7

    Article  Google Scholar 

  231. Manish K L, Ujendra K, Saurabh C, Inderdeep S (2016) Secondary processing of polymer matrix composites: challenges and opportunities. Int Conf Latest Develop Mater Manuf QC 2016

  232. Chawla KK (2012) Composite materials: science and engineering. Springer, New York

    Google Scholar 

  233. Sands JM, Fink BK, McKnight SH, Newton CH, Gillespie JW Jr, Palmese GR (2001) Environmental issues for polymer matrix composites and structural adhesives. Clean Prod Process 2(4):228–235. https://doi.org/10.1007/s100980000089

    Article  Google Scholar 

  234. Goodship V (2012) Recycling issues in polymer matrix composites. Failure Mechanisms in PMC. Elsevier, pp 337–367. https://doi.org/10.1533/9780857095329.2.337

    Chapter  Google Scholar 

  235. Wu RJ (1998) Some new developing trends for polymer matrix composites. Materials science and engineering serving society. Elsevier, pp 226–231. https://doi.org/10.1016/B978-044482793-7/50053-9

    Chapter  Google Scholar 

  236. Gul S, Awais M, Jabeen S, Farooq M (2020) Recent trends in preparation and applications of biodegradable polymer composites. J Renew Mater 8(10):1305–1326. https://doi.org/10.32604/jrm.2020.010037

    Article  CAS  Google Scholar 

  237. Maheswari CU, Reddy KO, Muzenda E, Shukla M, Rajulu AV (2013) Mechanical properties and chemical resistance of short tamarind fiber/unsaturated polyester composites: influence of fiber modification and fiber content. Int J Polym Analysis Charact 18(7):520–533. https://doi.org/10.1080/1023666X.2013.816073

    Article  CAS  Google Scholar 

  238. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym testing 24(6):694–698. https://doi.org/10.1016/j.polymertesting.2005.05.004

    Article  CAS  Google Scholar 

  239. Shekar HS, Ramachandra MJMTP (2018) Green composites: a review. Mater Today Proc 5(1):2518–2526. https://doi.org/10.1016/j.matpr.2017.11.034

    Article  CAS  Google Scholar 

  240. Benzait Z, Trabzon L (2018) A review of recent research on materials used in polymer–matrix composites for body armor application. J Comp Mater 52(23):3241–3263. https://doi.org/10.1177/0021998318764002

    Article  CAS  Google Scholar 

  241. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Comp Part B Eng 110:442–458

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Radhika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangishwar, S., Radhika, N., Sheik, A.A. et al. A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polym. Bull. 80, 47–87 (2023). https://doi.org/10.1007/s00289-022-04087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04087-4

Keywords

Navigation