Skip to main content
Log in

Integrated topology and controller optimization of motion systems in the frequency domain

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the precision mechatronics industry the limits of current technology are expanded by a very tight integration of the design disciplines involved, such as structural mechanics and control systems technology. In this article a framework is presented which allows the simultaneous and integrated design of a structure and controller. The structure is designed using topology optimization and the objectives and constraints are related to the closed-loop control performance and defined in the frequency domain. For simple examples it is shown that this approach leads to at least as good performance as a sequential approach consisting of eigenfrequency optimization followed by controller tuning, and leads to lighter designs. The framework allows rapid development of prototype designs, which may save a number of the costly design iterations which are currently made in industrial practice. Examples are found in the semiconductor industry, microscopy, micro–electromechanical devices, medical devices and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Except in some cases not of interest in this context, see Šebek and Hurák (2009)

  2. This occurs for instance if the frequency is chosen to be the loop gain crossover frequency ω c, where by definition |L(j ω c)|=1

  3. Note that in the literature on complex function theory several alternative definitions exist.

References

  • Albers A, Ottnad J, Minx J, Haeussler P (2008) Topology and controller parameter optimization in dynamic mechatronic systems In: Multidisciplinary Analysis Optimization Conferences, American Institute of Aeronautics and Astronautics, pp –

  • Åström K, Murray R (2010) Feedback systems: an introduction for scientists and engineers. Princeton University Press

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications, engineering online library, Springer

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69 (9-10):635–654. doi:10.1007/s004190050248

    Article  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods in Appl Mech Eng 190 (2627):3443–3459. doi:10.1016/S0045-7825(00)00278-4

    Article  MATH  Google Scholar 

  • Canfield RA, Meirovitch L (1994) Integrated structural design and vibration suppression using independent modal space control. AIAA J 32 (10):2053–2060. doi:10.2514/3.12251

    Article  MATH  Google Scholar 

  • Cheng F, Li D (1994) Multiobjective optimization of structures with/without control In: multidisciplinary analysis optimization Conferences, American Institute of Aeronautics and Astronautics, pp –

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34 (2):91–110. doi:10.1007/s00158-007-0101-y

    Article  MATH  MathSciNet  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478. doi:10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2

    Article  MATH  Google Scholar 

  • Garcia D, Karimi A, Longchamp R (2004) Robust PID controller tuning with specification on modulus margin In: Proceedings of the 2004 American Control Conference, vol 4, pp 3297–3302 vol.4

  • Hale AL, Dahl WE, Lisowski J (1985) Optimal simultaneous structural and control design of maneuvering flexible spacecraft. J Guid Control Dyn 8 (1):86–93. doi:10.2514/3.19939

    Article  Google Scholar 

  • Liu X, Begg DW (2000) On simultaneous optimisation of smart structures part i: Theory. Comput Methods Appl Mech Eng 184 (1):15–24. doi:10.1016/S0045-7825(99)00010-9

    Article  MATH  MathSciNet  Google Scholar 

  • Liu X, Begg DW, Fishwick RJ (1998) Genetic approach to optimal topology/controller design of adaptive structures. Int J Numer Methods Eng 41 (5):815–830

    Article  MATH  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121 (14):259–280. doi:10.1016/0045-7825(94)00714-X

    Article  MATH  MathSciNet  Google Scholar 

  • Messac A (1998) Control-structure integrated design with closed-form design metrics using physical programming. AIAA J 36 (5):855–864. doi:10.2514/2.447

    Article  Google Scholar 

  • Miller DF, Shim J (1987) Gradient-based combined structural and control optimization. J of Guid, Control Dyn 10 (3):291–298. doi:10.2514/3.20216

    Article  MATH  Google Scholar 

  • Milman M, Salama M, Scheid R, Bruno R, Gibson J (1991) Combined control-structural optimization. Comput Mech 8 (1):1–18. doi:10.1007/BF00370544

    Article  MATH  MathSciNet  Google Scholar 

  • Munnig-Schmidt R, Schitter G, van Eijk J (2011) The Design of high performance mechatronics: high-tech functionality by multidisciplinary system integration. Delft University Press

  • Ogata K (1997) Modern Control Engineering. Prentice Hall

  • Ou J, Kikuchi N (1996) Integrated optimal structural and vibration control design. Struct Optim 12 (4):209–216. doi:10.1007/BF01197358

    Article  Google Scholar 

  • Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20 (1):2–11. doi:10.1007/s001580050130

    Article  Google Scholar 

  • Salama M, Garba J, Demsetz L, Udwadia F (1988) Simultaneous optimization of controlled structures. Comput Mech 3 (4):275–282. doi:10.1007/BF00368961

    Article  MATH  Google Scholar 

  • Sarason D (2007) Complex Function Theory. American Mathematical Society

  • Šebek M, Hurák Z (2009) An often missed detail: formula relating peek sensitivity with gain margin less than one. In: Fikar M, Kvasnica M (eds) Proceedings of the 17th International Conference on Process Control ’09, Slovak University of Technology in Bratislava, Štrbské Pleso, Slovakia, pp 65–72

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33 (4-5):401–424. doi:10.1007/s00158-006-0087-x

    Article  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43 (5):589–596. doi:10.1007/s00158-011-0638-7

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055. doi:10.1007/s00158-013-0978-6

    MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16 (1):68–75. doi:10.1007/BF01214002

    Article  Google Scholar 

  • da Silva MM (2009) Computer-aided integrated design of mechatronic systems. PhD thesis, Katholieke Universiteit Leuven

    Google Scholar 

  • da Silveira OAA, Fonseca JSO (2010) Simultaneous design of structural topology and control for vibration reduction using piezoelectric material. In: Dvorkin E, Goldschmit M, Storti M (eds) Mecánica Computacional, vol XXIX, pp 8375–8389

  • Skogestad S, Postlethwaite I (1996) Multivariable feedback control, analysis and design. Wiley

  • Strang G (2007) Computational Science and Engineering. Wellesley-Cambridge Press

  • Tcherniak D (2002) Topology optimization of resonating structures using simp method. Int J Numer Methods Eng 54 (11):1605–1622. doi:10.1002/nme.484

    Article  MATH  Google Scholar 

  • Vandyshev K, Langelaar M, van Keulen F, van Eijk J (2012) Combined topology and shape optimization of controlled structures In: 3rd International Conference on Engineering Optimization. Rio de Janeiro, Brazil

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106 (1):25–57. doi:10.1007/s10107-004-0559-y

    Article  MATH  MathSciNet  Google Scholar 

  • Xu B, Jiang J, Ou J (2007) Integrated optimization of structural topology and control for piezoelectric smart trusses using genetic algorithm. J Sound Vib 307 (35):393–427. doi:10.1016/j.jsv.2007.05.057

    Article  Google Scholar 

  • Zeiler T, Gilbert M (1993) Integrated control/structure optimization by multilevel decomposition. Struct optim 6 (2):99–107. doi:10.1007/BF01743342

    Article  Google Scholar 

  • Zhao G, Chen B, Gu Y (2009) Control–structural design optimization for vibration of piezoelectric intelligent truss structures. Struct Multidiscip Optim 37 (5):509–519. doi:10.1007/s00158-008-0245-4

    Article  Google Scholar 

  • Zhu Y, Qiu J, Du H, Tani J (2002) Simultaneous optimal design of structural topology, actuator locations and control parameters for a plate structure. Comput Mech 29 (2):89–97. doi:10.1007/s00466-002-0316-0

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu Y, Qiu J, Du H, Tani J (2003) Simultaneous structural-control optimization of a coupled structural-acoustic enclosure. J Intell Mater Syst and Struct 14 (4-5):287–296. doi:10.1177/1045389X03034685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gijs van der Veen.

Appendices

Appendix A: Some rules for gradients involving complex variables

We consider real-valued functions of complex variables, e.g.:

$$\begin{array}{@{}rcl@{}} f = f(u)\in\mathbb{R},\qquad u=u(\theta)\in\mathbb{C},\qquad \theta\in\mathbb{R}. \end{array} $$

In this case u in turn depends on a real parameter 𝜃. In the context of this article f could be the magnitude of the sensitivity function at a given frequency, the complex variable u could be the harmonic response of the structure, which, in turn, depends on its parameters 𝜃. The real-valued total derivative of f with respect to 𝜃 can be obtained as follows: The function f can always be written as a function of the real and imaginary parts of u=u R +j u I and then it is readily seen that (Sarason 2007):

$$\begin{array}{@{}rcl@{}} f = f(u_{{\Re}},u_{{\Im}}) \rightarrow \frac{d f}{d \theta} = \frac{\partial f}{\partial u_{{\Re}}}\frac{d u_{\Re}}{d \theta} + \frac{\partial f}{\partial u_{\Im}}\frac{d u_{\Im}}{d \theta} \end{array} $$

For conciseness, partial derivative operators can be defined according toFootnote 3:

$$\begin{array}{@{}rcl@{}} \frac{\partial f}{\partial u} &= \frac{\partial f}{\partial u_{{\Re}}} + j\frac{\partial f}{\partial u_{\Im}}, \end{array} $$
(19)
$$\begin{array}{@{}rcl@{}} \frac{\partial u}{\partial \theta} &= \frac{\partial u_{{\Re}}}{\partial \theta} + j\frac{\partial u_{\Im}}{\partial \theta}. \end{array} $$
(20)

With these definitions it is possible to show that:

$$\begin{array}{@{}rcl@{}} \frac{d f}{d \theta} = {\Re}\left\{\frac{\partial f}{\partial \bar{u}} \frac{d u}{d \theta}\right\}, \end{array} $$

in which \(\bar {u}\) denotes the complex conjugate of u. This shows that the total derivative is always real-valued, although the partial derivatives involved may be complex-valued.

There is also a vector extension to these rules. When taking gradients of a scalar function f with respect to a vector \( {u}\in \mathbb {R}^{n}\) the following notation is adhered to:

$$\begin{array}{@{}rcl@{}} \frac{d f}{d {u}} = \left(\begin{array}{lllll} \frac{d f}{d u_{1}} & {\cdots} & \frac{d f}{d u_{n}}\end{array}\right)^{\top},\qquad \frac{d f}{d {u}^{\top}} = \left(\begin{array}{lllll} \frac{d f}{d u_{1}} & {\cdots} & \frac{d f}{d u_{n}}\end{array}\right). \end{array} $$

For the complex-valued case, let \( {u}= {u}(\theta )\in \mathbb {C}^{n}\) be a vector, then the following holds:

$$\begin{array}{@{}rcl@{}} \frac{d f}{d \theta} = \frac{\partial f}{\partial {u}_{{\Re}}^{\top}}\frac{d {u}_{{\Re}}}{d {\theta}} + \frac{\partial f}{\partial {u}_{\Im}^{\top}}\frac{d {{u}}_{\Im}}{d {\theta}} = {\Re}\left\{\frac{\partial f}{\partial {u}^{\star}} \frac{d {{u}}}{d {\theta}}\right\}. \end{array} $$

The superscript ⋆ denotes the complex conjugate transpose; \( {u}^{\star }\triangleq \bar { {u}}^{T}\). For a complete overview of the calculus of complex functions see, e.g., (Sarason 2007).

Appendix B: Formulating a Lagrangian for complex-valuedconstraints

The Lagrange multiplier approach for adjoint sensitivity analysis of a function consists in augmenting the function with the equality constraints in the problem (Strang 2007, Section 8.7). For problems such as compliance minimization, subject to a (real-valued) structural compatibility equation of the form K u=f, this constraint is typically expressed using a Lagrange multiplier term of the form:

$$ {\lambda}^{\top}({K}{u}-{f}), $$

which, if the compatibility is satisfied, should be zero for arbitrary nonzero λ.

Now, consider instead the dynamic problem in (1), which can be expressed as K d u=f, where u is complex-valued. Suppose the residual r of this equation is defined as r=K d uf, then the inner product of a complex-valued Lagrange multiplier with this residual yields:

$$\begin{array}{@{}rcl@{}} {\lambda}^{\star} {r} = {\Re}\{{\lambda}\}^{\top}{\Re}\{{r}\}+{\Im}\{{\lambda}\}^{\top}{\Im}\{{r}\} + \\ j({\Re}\{{\lambda}\}^{\top}{\Im}\{{r}\}-{\Im}\{{\lambda}\}^{\top}{\Re}\{{r}\}). \end{array} $$

It follows that if r is to vanish for arbitrary nonzero and complex-valued λ, a necessary and sufficient condition is to require:

$$ {\Re}\left\{{\lambda}^{\star} {r}\right\} = 0. $$
(21)

Note that an equivalent result could be obtained using:

$$ {\Re}\left\{{\lambda}^{\top} {r}\right\} = 0. $$

In this article the former version (21) with the complex conjugate transpose is used. Further note that this condition is equal to:

$$ {\Re}\left\{{\lambda}^{\star} {r}\right\} = \frac{1}{2}\left(\bar{{\lambda}}^{T} {r} + {\lambda}^{T}\bar{{r}}\right) = 0, $$

which is also sometimes found in literature in various forms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Veen, G., Langelaar, M. & Keulen, F.v. Integrated topology and controller optimization of motion systems in the frequency domain. Struct Multidisc Optim 51, 673–685 (2015). https://doi.org/10.1007/s00158-014-1161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1161-4

Keywords

Navigation