Skip to main content

Pragmatic Design Methods Using Adaptive Controller Structures for Mechatronic Applications with Variable Parameters and Working Conditions

  • Chapter
  • First Online:
Complex Systems

Abstract

This chapter treats two pragmatic design methods for controllers dedicated to mechatronic applications working under variable conditions; for such applications adaptive structures of the control algorithms are of great interest. Basically, the design is based on two extensions of the modulus optimum method and of the symmetrical optimum method (SO-m): the Extended SO-m and the double parameterization of the SO-m (2p-SO-m). Both methods are introduced by the authors and they use PI(D) controllers that can ensure high control performance: increased value of the phase margins, improved tracking performance, and efficient disturbance rejection. A short and systematic presentation of the methods and digital implementation aspects using an adaptive structure of the algorithms for industrial applications are given. The application deals with a cascade speed control structure for a driving system with continuously variable parameters, i.e., electrical drives with variable reference input, variable moment of inertia and variable disturbance input.

The PID controller can be said to be ‘the bread and the butter’ of the control engineering”.

(K.-J. Åström)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SO-m:

Symmetrical Optimum method

Mo-M:

Modulus Optimum method

ESO-m:

Extended Symmetrical Optimum method

2p-SO-m:

Double parameterization of the SO-m

2-DOF:

Two Degree of Freedom

VMI:

Variable Moment of Inertia

t.f.:

Transfer function

c.a.:

Control algorithm

C-VR-MI-LD:

Continuously Variable Reference, Moment of Inertia and Load Disturbance

DC-m, BLDC-m:

DC-motors, Brush-Less DC-motors

MM:

Mathematical Model

CS:

Control Structure

CCS:

Cascade Control Structure

References

  1. Åström, K.J., Hägglund, T.: PID Controllers Theory: Design and Tuning. Instrument Society of America, Research Triangle Park, NC (1995)

    Google Scholar 

  2. Föllinger, O.: Regelungstechnik. Elitera Verlag, Berlin (1985)

    Google Scholar 

  3. Kessler, C.: Das symetrische Optimum. Regelungstechnik 6(11), 395–400 (1958)

    MATH  Google Scholar 

  4. Kessler, C.: Das symetrische Optimum. Regelungstechnik 6(12), 432–436 (1958)

    Google Scholar 

  5. Loron, L.: Tuning of PID controllers by the non-symmetrical optimum method. Automatica 33(1), 103–107 (1997)

    Article  MATH  Google Scholar 

  6. Preitl, S., Precup, R.-E.: An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35(10), 1731–1736 (1999)

    Article  MATH  Google Scholar 

  7. Vrancic, D., Peng, Y., Strmcnik, S.: A new PID controller tuning method based on multiple integrations. Control Eng. Pract. 7(5), 623–633 (1999)

    Article  Google Scholar 

  8. Vrancic, D., Strmcnik, S., Juricic, D.: A magnitude optimum multiple integration tuning method for filtered PID controller. Automatica 37(9), 1473–1479 (2001)

    Article  MATH  Google Scholar 

  9. Preitl, Z.: Improving disturbance rejection by means of a double parameterization of the symmetrical optimum method. Sci. Bull. “Politehnica” Univ. Timisoara, Trans. Autom. Comput. Sci. 50(64), 25–34 (2005)

    Google Scholar 

  10. Preitl, Z.: Model Based Design Methods for Speed Control Applications. Editura Politehnica, Timisoara, Romania (2008)

    Google Scholar 

  11. Vrančić, D., Strmčnik, S., Kocijan, J., de Moura Oliveira, P.B.: Improving disturbance rejection of PID controllers by means of the magnitude optimum method. ISA Trans. 49(1), 47–56 (2010)

    Google Scholar 

  12. Papadopoulos, K.G., Mermikli, K., Margaris, N.I.: Optimal tuning of PID controllers for integrating processes via the symmetrical optimum criterion. In: Proceedings of 19th Mediterranean Conference on Control and Automation (MED 2012), Corfu, Greece, pp. 1289–1294 (2011)

    Google Scholar 

  13. Papadopoulos, K.G., Mermikli, K., Margaris, N.I.: On the automatic tuning of PID type controllers via the magnitude optimum criterion. In: Proceedings of 2012 IEEE International Conference on Industrial Technology (ICIT 2012), Athens, Greece, pp. 869–874 (2012)

    Google Scholar 

  14. Papadopoulos, K.G., Margaris, N.I.: Extending the symmetrical optimum criterion to the design of PID type-p control loops. J. Process Control 22(1), 11–25 (2012)

    Article  Google Scholar 

  15. Isermann, R.: Mechatronic Systems: Fundamentals. Springer, Berlin, Heidelberg, New York (2005)

    Google Scholar 

  16. Preitl, S., Precup, R.-E.: Cross optimization aspects concerning the extended symmetrical optimum method. Preprints of PID’00 IFAC Workshop, Terrassa, Spain, pp. 223–228 (2000)

    Google Scholar 

  17. Preitl, S., Precup, R.-E.: Linear and fuzzy control extensions of the symmetrical optimum method. In: Kolemisevska-Gugulovska, T., Stankovski, M.J. (eds.) Proceedings COSY 2011 of the Special International Conference on Complex Systems: Synergy of Control, Computing & Communication, Ohrid, Macedonia, 16–20 September. The ETAI Society, Skopje, MK, pp. 59–68 (2011)

    Google Scholar 

  18. Precup, R.-E., Preitl, S.: Development of some fuzzy controllers with non-homogenous dynamics with respect to the input channels meant for a class of systems. In: Proceedings of European Control Conference (ECC’99), Karlsruhe, Germany, paper index F56, 6 pp (1999)

    Google Scholar 

  19. Preitl, S., Precup, R.-E., Preitl, Z.: Control Structures and Algorithms, vols. 1 and 2. Editura Orizonturi Universitare, Timisoara, Romania (2009) (in Romanian)

    Google Scholar 

  20. Preitl, S., Precup, R.-E.: Development of TS fuzzy controllers with dynamics for low order benchmarks with time variable parameters. In: Proceedings of 5th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary, pp. 239–248 (2004)

    Google Scholar 

  21. Preitl, S., Preitl, Z., Precup, R.-E.: Low cost fuzzy controllers for classes of second-order systems. Preprints of 15th World Congress of IFAC (b’02), Barcelona, Spain, paper index 416, 6 pp (2002)

    Google Scholar 

  22. Precup, R.-E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)

    Article  Google Scholar 

  23. Koch, C., Radler, O., Spröwitz, A., Ströhla, T., Zöppig, V.: Project course ‘Design mechatronic systems’. In: Proceedings of IEEE International Conference on Mechatronics (ICM 2006), Budapest, Hungary, pp. 69–72 (2006)

    Google Scholar 

  24. Hehenberger, P., Naderer, R., Schuler, C., Zeman, K.: Conceptual design of mechatronic systems as a recurring element of innovation processes. In: Proceedings of 4th IFAC Symposium on Mechatronic Systems (MECHATRONICS 2006), Heidelberg, Germany, pp. 342–347 (2006)

    Google Scholar 

  25. Pabst, I.: An approach for reliability estimation and control of mechatronic systems. In: Proceedings of 4th IFAC Symposium on Mechatronic Systems (MECHATRONICS 2006), Heidelberg, Germany, pp. 831–836 (2006)

    Google Scholar 

  26. Su, Y., Mueller, C.: Smooth reference trajectory generation for industrial mechatronic systems under torque saturation. In: Proceedings of 4th IFAC Symposium on Mechatronic Systems (MECHATRONICS 2006), Heidelberg, Germany, pp. 896–901 (2006)

    Google Scholar 

  27. Boldea, I.: Advanced electric drives. Ph.D. courses. “Politehnica” Univ. Timisoara, Timisoara, Romania (2010–2011)

    Google Scholar 

  28. Nasar, S.A., Boldea, I.: Electric Drives. Electric Power Engineering Series, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  29. Yedamale, P.: Brushless DC (BLDC) Motor Fundamentals. Application Note 885, Microchip Technology Inc., Chandler, AZ (2003)

    Google Scholar 

  30. Baldursson, S.: BLDC motor modelling and control—A Matlab/Simulink implementation. M.Sc. Thesis, Institutionen för Energi och Miljö, Göteborg, Sweden (2005)

    Google Scholar 

  31. Grimble, M.J., Hearns, G.: Advanced control for hot rolling mills. In: Frank, P.-M. (ed.) Advances in Control: Highlights of ECC’99, pp. 135–170. Springer, London (1999)

    Google Scholar 

  32. Stînean, A.-I., Preitl, S., Precup, R.-E., Dragoş, C.-A., Petriu, E., Rădac, M.-B.: Choosing a proper control structure for a mechatronic system with variable parameters. Preprints of 2nd IFAC Workshop on Convergence of Information Technologies and Control Methods with Power Systems (ICPS’13), Cluj-Napoca, Romania, paper index 29, 6 pp (2013)

    Google Scholar 

  33. Škrjanc, I., Blažič, S., Matko, D.: Direct fuzzy model-reference adaptive control. Int. J. Intell. Syst. 17(10), 943–963 (2002)

    Article  MATH  Google Scholar 

  34. Baranyi, P., Tikk, D., Yam, Y., Patton, R.J.: From differential equations to PDC controller design via numerical transformation. Comput. Ind. 51(3), 281–297 (2003)

    Article  MATH  Google Scholar 

  35. Zhao, J., Dimirovski, G.M.: Quadratic stability of a class of switched nonlinear systems. IEEE Trans. Autom. Control 49(4), 574–578 (2004)

    Article  MathSciNet  Google Scholar 

  36. Nakashima, T., Schaefer, G., Yokota, Y., Ishibuchi, H.: A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets Syst. 158(3), 284–294 (2007)

    Article  MathSciNet  Google Scholar 

  37. Vaščák, J.: Approaches in adaptation of fuzzy cognitive maps for navigation purposes. In: Proceedings of 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2010), Herl’any, Slovakia, pp. 31–36 (2010)

    Google Scholar 

  38. Lian, J., Zhao, J., Dimirovski, G.M.: Integral sliding mode control for a class of uncertain switched nonlinear systems. Eur. J. Control 16(1), 16–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Milojković, M., Nikolić, S., Danković, B., Antić, D., Jovanović, Z.: Modelling of dynamical systems based on almost orthogonal polynomials. Math. Comput. Modell. Dyn. Syst. 16(2), 133–144 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tikk, D., Johanyák, Z.C., Kovács, S., Wong, K.W.: Fuzzy rule interpolation and extrapolation techniques: criteria and evaluation guidelines. J. Adv. Comput. Intell. Intell. Inf. 15(3), 254–263 (2011)

    Google Scholar 

  41. Angelov, P., Yager, R.: A new type of simplified fuzzy rule-based systems. Int. J. Gen Syst. 41(2), 163–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Triharminto, H.H., Adji, T.B., Setiawan, N.A.: 3D dynamic UAV path planning for interception of moving target in cluttered environment. Int. J. Artif. Intell. 10(S13), 154–163 (2013)

    Google Scholar 

  43. Wang, Y., Yang, Y., Zhao, Z.: Robust stability analysis for an enhanced ILC-based PI controller. J. Process Control 23(2), 201–214 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant in the framework of the Partnerships in priority areas—PN II program of the Romanian National Authority for Scientific Research ANCS, CNDI - UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-0732, by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0109. Also, the work was partially supported by the strategic grant POSDRU ID 77265 (2010) of the Ministry of Labor, Family and Social Protection, Romania, co-financed by the European Social Fund—Investing in People.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Preitl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Preitl, S., Precup, RE., Preitl, Z., Stînean, AI., Dragoş, CA., Rădac, MB. (2016). Pragmatic Design Methods Using Adaptive Controller Structures for Mechatronic Applications with Variable Parameters and Working Conditions. In: Dimirovski, G. (eds) Complex Systems. Studies in Systems, Decision and Control, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28860-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28860-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28858-1

  • Online ISBN: 978-3-319-28860-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics