Skip to main content
Log in

Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 06 September 2007

Abstract

A frequent goal of the design of vibrating structures is to avoid resonance of the structure in a given interval for external excitation frequencies. This can be achieved by, e.g., maximizing the fundamental eigenfrequency, an eigenfrequency of higher order, or the gap between two consecutive eigenfrequencies of given order. This problem is often complicated by the fact that the eigenfrequencies in question may be multiple, and this is particularly the case in topology optimization. In the present paper, different approaches are considered and discussed for topology optimization involving simple and multiple eigenfrequencies of linearly elastic structures without damping. The mathematical formulations of these topology optimization problems and several illustrative results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP (2006) Computational challenges for multi-physics topology optimization. In: Mota Soares CA, Martins JAC, Rodrigues HC, Ambrosio JAC (eds) Computational mechanics—solids, structures and coupled problems. Springer, Dordrecht, The Netherlands, pp 1–20

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MATH  Google Scholar 

  • Bendsøe MP, Olhoff N (1985) A method of design against vibration resonance of beams and shafts. Optim Control Appl Methods 6:191–200

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544

    Google Scholar 

  • Bendsøe MP, Olhoff N, Sigmund O (eds) (2006) Topological design optimization of structures, machines and materials—status and perspectives. Proc. IUTAM Symp., Copenhagen, Denmark, October 26–29, 2005. Springer, Dordrecht, The Netherlands

  • Bratus AS, Seyranian AP (1983a) Bimodal solutions in eigenvalue optimization problems. Prikl Mat Meh 47:546–554

    Google Scholar 

  • Bratus AS, Seyranian AP (1983b) Bimodal solutions in eigenvalue optimization problems. Appl Math Mech 47:451–457

    Article  MathSciNet  Google Scholar 

  • Cheng G, Olhoff N (1982) Regularized formulation for optimal design of axisymmetric plates. Int J Solids Struct 18:153–169

    Article  MATH  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MATH  MathSciNet  Google Scholar 

  • Diaz AR, Lipton R, Soto CA (1994) A new formulation of the problem of optimum reinforcement of Reissner–Midlin plates. Comp Meth Appl Mechs Eng 123:121–139

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscipl Optim 33:305–321

    Google Scholar 

  • Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  • Haftka RT, Gurdal Z, Kamat MP (1990) Elements of structural optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic, New York

    MATH  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986

    Article  Google Scholar 

  • Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70:47–61

    Article  MATH  MathSciNet  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72:535–563

    Article  MATH  Google Scholar 

  • Lancaster P (1964) On eigenvalues of matrices dependent on a parameter. Numer Math 6:377–387

    Article  MATH  MathSciNet  Google Scholar 

  • Ma ZD, Cheng HC, Kikuchi N (1994) Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Comput Syst Eng 5(1):77–89

    Article  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MATH  MathSciNet  Google Scholar 

  • Masur EF (1984) Optimal structural design under multiple eigenvalue constraints. Int J Solids Struct 20:211–231

    Article  MATH  MathSciNet  Google Scholar 

  • Masur EF (1985) Some additional comments on optimal structural design under multiple eigenvalue constraints. Int J Solids Struct 21:117–120

    Article  MATH  MathSciNet  Google Scholar 

  • Olhoff N (1976) Optimization of vibrating beams with respect to higher order natural frequencies. J Struct Mech 4:87–122

    Google Scholar 

  • Olhoff N (1977) Maximizing higher order eigenfrequencies of beams with constraints on the design geometry. J Struct Mech 5:107–134

    Google Scholar 

  • Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17

    Article  Google Scholar 

  • Olhoff N, Du J (2007) Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration. Struct Multidisc Optim (in press)

  • Olhoff N, Parbery R (1984) Designing vibrating beams and rotating shafts for maximum difference between adjacent natural frequencies. Int J Solids Struct 20:63–75

    Article  MATH  Google Scholar 

  • Overton ML (1988) On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J Matrix Anal Appl 9(2):256–268

    Article  MATH  MathSciNet  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Rozvany G, Zhou M (1991) Applications of the COC method in layout optimization. In: Eschenauer H, Mattheck C, Olhoff N (eds) Proc. Int. Conf. on Engineering Optimization in Design Processes (held in Karlsruhe 1990). Springer, Berlin Heidelberg New York, pp 59–70

    Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252

    Article  Google Scholar 

  • Seyranian AP (1987a) Multiple eigenvalues in optimization problems. Prikl Mat Meh 51:349–352

    Google Scholar 

  • Seyranian AP (1987b) Multiple eigenvalues in optimization problems. Appl Math Mech 51:272–275

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524

    Article  Google Scholar 

  • Sigmund O (2001) Microstructural design of elastic band gap structures. In: Cheng GD et al (eds), Proceedings of the 4th World Congress of Structrual and Multidisciplinary Optimization WCSMO4. Liaoning Electronic, Dalian, China, pp 6

    Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond Ser A Math Phys Sci 361:1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey of procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes − a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor JE, Bendsøe MP (1984) An interpretation of min–max structural design problems including a method for relaxing constraints. Int J Solids Struct 20:301–314

    Article  MATH  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  • Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J R Aeronaut Soc 66:590–591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Olhoff.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00158-007-0167-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Olhoff, N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34, 91–110 (2007). https://doi.org/10.1007/s00158-007-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0101-y

Keywords

Navigation