Skip to main content

Advertisement

Log in

Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study explored the genetic constitutions of wheat-Agropyron cristatum 6P chromosomal translocation and determined the effects of 6P intercalary chromosome segment on thousand-grain weight and spike length in wheat.

Abstract

Crop wild relatives provide rich genetic resources for wheat improvement. Introduction of alien genes from Agropyron cristatum into common wheat can broaden its genetic diversity. In this study, radiation-induced wheat-A. cristatum translocation line Pubing3035 derived from the offspring of wheat-A. cristatum 6P chromosomes addition line was identified and analyzed using genomic in situ hybridization (GISH), dual-color fluorescence in situ hybridization (FISH), and molecular markers. GISH analysis revealed that Pubing3035 was a Ti1AS-6PL-1AS·1AL intercalary translocation. The breakpoint was pinpointed to locate near the centromeric region on the short arm of wheat chromosome 1A based on a constructed F2 linkage map and it was flanked by markers SSR12 and SSR263. The genotypic data, combined with the phenotypes, indicated that A. cristatum 6P chromosomal segment played an important role in regulating the thousand-grain weight and spike length. On average, the thousand-grain weight and spike length in translocation individuals were approximately 2.5 g higher and 0.7 cm longer than those in non-translocation individuals in F2 and BC1F1 populations. The clusters of quantitative trait loci for thousand-grain weight, spike length, and spikelet density contributed by 6P chromosome segment were mapped between A. cristatum unique marker Agc7155 and wheat marker SSR263, which, respectively, explained phenotypic variance of 24.96, 12.38 and 17.20 % with an LOD of 10.63, 4.89 and 5.59. Overall, the translocation Pubing3035 had a positive effect on the yield of wheat, which laid the foundation for the localization of A. cristatum excellent genes and made itself a promising and valuable germplasm for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araus J, Brown H, Febrero A, Bort J, Serret M (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ 16:383–392

    Article  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Lagudah E, Appels R (1992) Wide crosses in cereals. Annu Rev Plant Biol 43:117–143

    Article  Google Scholar 

  • Bie TD, Cao YP, Chen PD (2007) Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid. J Integr Plant Biol 49:1619–1626

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1–26

    Article  CAS  Google Scholar 

  • Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123:293–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Cao Y, Bie T, Wang X, Chen P (2009) Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. J Genet Genom 36:313–320

    Article  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci 108:7727–7732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen P, Qi L, Zhou B, Zhang S, Liu D (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    CAS  PubMed  Google Scholar 

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breeding 31:477–484

    Article  CAS  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717

    Article  CAS  Google Scholar 

  • Dai C (2012) Identification and Genetic analysis of common wheat-Agropyroncristatum 6P translocation lines. Dissertation, Chinese Academy of Agricultural Sciences (in Chinese)

  • Dellaporta S, Wood J, Hicks J (1983) A rapid method for DNA extraction from plant tissue. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Springer, New York

    Book  Google Scholar 

  • Dong Y, Zhou R, Xu S, Li L, Cauderon Y, Wang R (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Article  Google Scholar 

  • Donmez E, Sears R, Shroyer J, Paulsen G (2001) Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci 41:1412–1419

    Article  Google Scholar 

  • Du W, Wang J, Pang Y, Li Y, Chen X, Zhao J, Yang Q, Wu J (2013) Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS One 8:e53921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Faris J, Xu S, Cai X, Friesen T, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosom Res 16:1097–1105

    Article  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp W, McIntosh R, Gill B (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci 108:7657–7658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Han H, Bai L, Su J, Zhang J, Song L, Gao A, Yang X, Li X, Liu W, Li L (2014) Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One 9:e91066

    Article  PubMed Central  PubMed  Google Scholar 

  • Hou J, Jiang Q, Hao C, Wang Y, Zhang H, Zhang X (2014) Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol 164:1918–1929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Zhang J-P, Liu W-H, Yang X-M, Li X-Q, Lu Y-Q, Li L-H, Gao A-N (2013) Identification of Wheat-Agropyron cristatum 6P Chromosome Intercalary Translocation Lines. J Plant Genet Resour 4:004

    Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP, Peterson TS, Xu SS (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52:467–483

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1993) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  CAS  Google Scholar 

  • Kang H, Wang Y, Fedak G, Cao W, Zhang H, Fan X, Sha L, Xu L, Zheng Y, Zhou Y (2011) Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One 6:e21802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ketata H, Edwards L, Smith E (1976) Inheritance of eight agronomic characters in a winter wheat cross. Crop Sci 16:19–22

    Article  Google Scholar 

  • Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3: Genes| Genomes|. Genetics 2:665–673

    CAS  Google Scholar 

  • Larson SR, Kishii M, Tsujimoto H, Qi L, Chen P, Lazo GR, Jensen KB, Wang RR-C (2012) Leymus EST linkage maps identify 4NsL–5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206

    Article  CAS  PubMed  Google Scholar 

  • Li L (1995) Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) gaertn. Chin J Genet 22:105–112

    Google Scholar 

  • Li L, Yang X, Li X, Dong Y, Chen X (1998a) Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agric Sin 31:1–6

    CAS  Google Scholar 

  • Li L, Yang X, Zhou R, Li X, Dong Y (1998b) Establishment of wheat-Agropyron cristatum Alien Addition Lines II. Identification of alien chromosomes and analysis of development approaches. Acta Genetica Sinica 25:538–544

    Google Scholar 

  • Li H, Conner R, Liu Z, Li Y, Chen Y, Zhou Y, Duan X, Shen T, Chen Q, Graf R (2007) Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis 91:368–374

    Article  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    Article  CAS  PubMed  Google Scholar 

  • Li G-P, Chen P-D, Zhang S-Z, Zhao H (2011) Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour 5:016

    Google Scholar 

  • Liu W-H, Luan Y, Wang J-C, Wang X-G, Su J-J, Zhang J-P, Yang X-M, Gao A-N, Li L-H (2010) Production and identification of wheat-Agropyron cristatum (1·4P) alien translocation lines. Genome 53:472–481

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO (2011) Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Lizana X, Calderini D (2013) Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile. J Agric Sci 151:209–221

    Article  Google Scholar 

  • Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS. 1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  CAS  PubMed  Google Scholar 

  • Maydup M, Antonietta M, Guiamet J, Graciano C, López JR, Tambussi E (2010) The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Research 119:48–58

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Article  Google Scholar 

  • Moghaddam M, Ehdaie B, Waines J (1997) Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica 95:361–369

    Article  Google Scholar 

  • Mukai Y, Friebe B, Hatchett J, Yamamoto M, Gill B (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  CAS  PubMed  Google Scholar 

  • Pingali PL, Rajaram S (1999) Global wheat research in a changing world: Options for sustaining growth in wheat productivity. CIMMYT World Wheat Facts and Trends (CIMMYT)

  • Qi L, Pumphrey M, Friebe B, Zhang P, Qian C, Bowden R, Rouse M, Jin Y, Gill B (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Report 4:102–109

    Article  CAS  Google Scholar 

  • Sánchez-Díaz M, García J, Antolín M, Araus J (2002) Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable carbon isotope composition of barley. Photosynthetica 40:415–421

    Article  Google Scholar 

  • Schuler SF, Bacon RK, Gbur EE (1994) Kernel and spike character influence on test weight of soft red winter wheat. Crop Sci 34:1309–1313

    Article  Google Scholar 

  • Šekularac A (2013) Phenotypic variability of primary spike length in winter wheat (Triticum aestivum L.). 48 Hrvatski i 8 Međunarodni Simpozij Agronoma, Dubrovnik, Hrvatska, 17–22 veljač 2013 Zbornik Radova. Poljoprivredni Fakultet Sveučilište Josipa Jurja Strossmayera u Osijeku, pp 269–273

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Article  Google Scholar 

  • Sharma SN, Sain RS, Sharma RK (2003) Genetics of spike length in durum wheat. Euphytica 130:155–161

    Article  CAS  Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trethowan R, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Žalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Change 4:637–643

    Article  Google Scholar 

  • Wang L, Chen P, Wang X (2010) Molecular cytogenetic analysis of Triticum aestivumLeymusracemosus reciprocal chromosomal translocation T7DS· 5LrL/T5LrS· 7DL. Chin Sci Bull 55:1026–1031

    Article  CAS  Google Scholar 

  • Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Cheng R, Xue S, Kong Z, Wan H, Li G, Huang Y, Jia H, Jia J, Zhang L, Ma Z (2014) Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed 33:129–138

    Article  CAS  Google Scholar 

  • Xiao Y, Liu X, He S, Xia X, He Z, Ji W (2011) Analyses of genetic effect of 1BL. 1RS translocation on kernel traits in common wheat. J Northwest Agricul For Univ 5:024

    Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    Article  CAS  PubMed  Google Scholar 

  • Zečević V, Knežević D, Mićanović D, Madić M (2008) Genetic and phenotypic variability of spike length and plant height in wheat. Kragujevac J Sci 30:125–130

    Google Scholar 

  • Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. doi:10.1016/j.ygeno.2015.04.003 (Accepted 8 April)

    Google Scholar 

  • Zhao W, Qi L, Gao X, Zhang G, Dong J, Chen Q, Friebe B, Gill BS (2010) Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS· 1 V# 3L and T1DL· 1V# 3S and their effect on grain quality. Euphytica 175:343–350

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the National Basic Research Program of China (973 Grant No. 2011CB100104), the National High Technology Research and Development Program of China (863 Grant no. 2011AA100101), the National Natural Science Foundation of China (Grant No. 31071416).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Li.

Additional information

Communicated by S. S. Xu.

Jing Zhang and Jinpeng Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Supplementary material 2 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, J., Liu, W. et al. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128, 1827–1837 (2015). https://doi.org/10.1007/s00122-015-2550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2550-9

Keywords

Navigation