Skip to main content
Log in

Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Qfhi.nau-5A is a major quantitative trait locus (QTL) against Fusarium graminearum infection in the resistant wheat germplasm Wangshuibai. Genetic analysis using BC3F2 and BC4F2 populations, derived from selfing two near-isogenic lines (NIL) heterozygous at Qfhi.nau-5A that were developed, respectively, with Mianyang 99-323 and PH691 as the recurrent parent, showed that Qfhi.nau-5A inherited like a single dominant gene. This QTL was thus designated as Fhb5. To fine map it, these two backcross populations and a recombinant inbred line (RIL) population derived from Nanda2419 × Wangshuibai were screened for recombinants occurring between its two flanking markers Xbarc56 and Xbarc100. Nineteen NIL recombinants were identified from the two backcross populations and nine from the RIL population. In the RIL recombinant selection process, selection against Fhb4 present in the RIL population was incorporated. Genotyping these recombinant lines with ten markers mapping to the Xbarc56Xbarc100 interval revealed four types of Mianyang 99-323-derived NIL recombinants, three types of PH691-derived NIL recombinants, and four types of RIL recombinants. In different field trials, the percentage of infected spikes of these lines displayed a distinct two-peak distribution. The more resistant class had over 55% less infection than the susceptible class. Common to these resistant genotypes, the 0.3-cM interval flanked by Xgwm304 and Xgwm415 or one of these two loci was derived from Wangshuibai, while none of the susceptible recombinants had Wangshuibai chromatin in this interval. This interval harboring Fhb5 was mapped to the pericentromeric C–5AS3-0.75 bin through deletion bin mapping. The precise localization of Fhb5 will facilitate its utilization in marker-assisted wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  CAS  Google Scholar 

  • Bassam BJ, Gaetano-Anollé G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Hanson MR (2001) Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics 266:223–230

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant Breed 125:99–101

    Article  CAS  Google Scholar 

  • Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, Xu ML (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  PubMed  CAS  Google Scholar 

  • Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122:479–487

    Article  PubMed  CAS  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J (2003) Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Genet Genomics 269:388–394

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: Type I resistance. Theor Appl Genet 112:528–535

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP version 3.0. Technical report, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 25:317–321

    Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  Google Scholar 

  • Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    Article  CAS  Google Scholar 

  • Ma ZQ, Röder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123–130

    Article  PubMed  CAS  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using the RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  PubMed  CAS  Google Scholar 

  • Ma ZQ, Xue SL, Lin F, Yang SH, Li GQ, Tang MZ, Kong ZX, Cao Y, Zhao DM, Jia HY, Zhang ZZ, Zhang LX (2008) Mapping and validation of scab resistance QTLs in the Nanda2419 × Wangshuibai population. Cereal Res Commun 36(Suppl B):245–251

    Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221

    Article  Google Scholar 

  • Qi LL, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhidskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopath 53:831–838

    Google Scholar 

  • Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX (2009) Fine mapping and candidate gene analysis of spd6 responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theor Appl Genet 119:827–836

    Article  PubMed  CAS  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50:223–242

    Article  CAS  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhao DM, Zhu HL, Xu HB, Wu JZ, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F, Tang MZ, Wang Y, Wu XY, Zhang ZZ, Zhang LX, Kong ZX, Ma ZQ (2010a) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 25:397–405

    Article  CAS  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Xu F, Lin F, Tang MZ, Wang Y, An X, Xu HB, Zhang LX, Kong ZX, Ma ZQ (2010b) Fine mapping Fhb4 a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156

    Article  PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yang ZP, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    Article  PubMed  CAS  Google Scholar 

  • Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by “973” program (2010CB125902), the National Natural Science Foundation of China programs (31000535, 31030054, 30721140555), funds for transgenic plants (2008ZX08002-001 and 2009ZX08009-049B), the Natural Science Foundation of Jiangsu Province of China program (BK2009305), the Research Fund for the Doctoral Program of Higher Education of China program (20100097120042), the “111” project B08025, and the PAPD project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Ma.

Additional information

Communicated by F. Ordon.

S. L. Xue and F. Xu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, S., Xu, F., Tang, M. et al. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123, 1055–1063 (2011). https://doi.org/10.1007/s00122-011-1647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1647-z

Keywords

Navigation