Skip to main content
Log in

Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Melon (Cucumis melo L.) is highly nutritious vegetable species and an important source of β-carotene (Vitamin A), which is an important nutrient in the human diet. A previously developed set of 81 recombinant inbred lines (RIL) derived from Group Cantalupensis US Western Shipper market type germplasm was examined in two locations [Wisconsin (WI) and California (CA), USA] over 2 years to identify quantitative trait loci (QTL) associated with quantity of beta-carotene (QβC) in mature fruit. A moderately saturated 256-point RIL-based map [104 SSR, 7 CAPS, 4 SNP in putative carotenoid candidate genes, 140 dominant markers and one morphological trait (a) spanning 12 linkage groups (LG)] was used for QβC–QTL analysis. Eight QTL were detected in this evaluation that were distributed across four LG that explained a significant portion of the associated phenotypic variation for QβC (R 2 = 8 to 31.0%). Broad sense heritabilities for QβC obtained from RIL grown in WI. and CA were 0.56 and 0.68, respectively, and 0.62 over combined locations. The consistence of QβC in high/low RIL within location across years was confirmed in experiments conducted over 2 years. QTL map positions were not uniformly associated with putative carotenoid genes, although one QTL (β-car6.1) interval was located 10 cM from a β-carotene hydroxylase gene. These results suggest that accumulation of β-carotene in melon is under complex genetic control. This study provides the initial step for defining the genetic control of QβC in melon leading to the development of varieties with enhanced β-carotene content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, attraction, and human health. Plant Cell 7:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64

    Article  CAS  Google Scholar 

  • Bernardo R (2002) Mapping quantitative trait loci. In: Bernardo R (ed) Breeding for quantitative traits in plants. Stemma Press, Woodbury, pp 277–300

    Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Chaïb J, Lecomte L, Buret M, Frédéric H (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomoto. Theor Appl Genet 115:429–442

    Article  PubMed  CAS  Google Scholar 

  • Chiba N, Suwabe K, Nunome T, Hirai M (2003) Development of mircosatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops. Breed Sci 53:21–27

    Article  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Paris HS, Cohen S, Rabinowithc HD, Karchi Z (1997) Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93:331–337

    Article  Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVincente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J et al (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • de Leon N, Coors JG, Kaeppler SM, Rosa GJM (2005) Genetic control of prolificacy and related traits in the golden glow maize population: I phenotypic evaluation. Crop Sci 45:1361–1369

    Google Scholar 

  • Demming-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Amer Soc Hort Sci 132:80–89

    Google Scholar 

  • Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn. Longman Group, London

    Google Scholar 

  • Fan Z, Robbins MD, Staub JE (2006) Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet 112:843–855

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Chung SM, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875–883

    Article  PubMed  CAS  Google Scholar 

  • Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). TAG (in press)

  • Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterization of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hortic Sci Biotechnol 82:330–334

    CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Loper J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of Lycopersicon esculentum × Lycopersicum parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Giovannucci E (2002) Lycopene and protaste cancer risk. Methodological consideration in the epidemiology literature. Pure Appl Chem 74:1427–1434

    Article  CAS  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monforte A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Development of a consensus map of melon (Cucumis melo L.) based on high-quality markers (RFLPs and SSRs) using F2 and double-haploid line populations. Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Gross J (1987) Carotenoids. In: Schweigert BS (ed) Pigments in fruits. Academic Press, London, pp 87–186

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. J Heredity 69:315–324

    CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrots (Daucus carota): Isolation, sequence characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  PubMed  CAS  Google Scholar 

  • Karvouni Z, John I, Taylor JE, Watson CF, Turner AJ, Grierson D (1995) Isolation and characterization of a melon cDNA clone encoding phytoene synthase. Plant Mol Biol 27:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Xiang C, Yu Z, Zhang Z, Liu F, Peng C, Peng X (2007) Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol Ecol Notes 7:281–283

    Article  CAS  Google Scholar 

  • Kong Q, Xiang C, Yu Z (2006) Development of EST-SSR in Cucumis sativus from sequence database. Mol Ecol Notes 6:1234–1236

    Article  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lester GE, Eischen F (1995) Beta-carotene content of postharvest orange-fleshed muskmelon fruit: Effect of cultivar, growing location and size. Plant Food Hum Nutr 49:191–197

    Article  Google Scholar 

  • Liou PC, Chang YM, Hsu WS, Cheng YH, Chang HR, Hsiao CH (1998) Construction of a linkage map in Cucumis melo (L.) using random amplified polymorphic DNA markers. In: Drew RA (ed) Proceedings of the international symposium in biotechnology: troplical and subtropical species, pp 123–131

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran M, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DNA-J cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. The Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Manrique K, Hermann M (2001) Effect of GxE interaction on root yield and beta-carotene content of selected sweetpotato (Ipomoea batatas (L) Lam.) varities and breeding clones. CIP Program Report 1999–2000, pp 281–287

  • Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. J Nutr 132:518S–524S

    PubMed  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Gale MD, Kurata N, Flawell R (1993) Molecular analysis of small grain genomes: current status and prospects. Biotechnology (New York) 11:584–589

    Article  CAS  Google Scholar 

  • Munger HL, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44

    Google Scholar 

  • Navazio JP (1994) Utilization of high carotene cucumber germplasm for genetic improvement of nutritional quality. PhD Thesis, University of Wisconsin, Madison

  • Oliver M, Garcia-Mas J, Cardus M, Puedo N, Lopez-Sese A, Arroyo M, Gomez-Paniagua H, Arus P, de Vincente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Paris KM, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic and elite US Western Shipping germplasm. Mol breed, doi 10.1007/S11032-008-9185-3

  • Perin C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002a) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002b) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L). Mol Genet Genomics 266:933–941

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Ritchel PS, de Lima-Lins TC, Lourenco-Tristan R, Cortopasi-Buso GS, Buso JA, Ferreiram ME (2004) Development of microsatellite marker from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4. http://www.Biomedcentral.com/I471-2229/4/9

  • Römer S, Fraser PD (2005) Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221:305–308

    Article  PubMed  Google Scholar 

  • Royal Horticultural Society (2005) The Royal Horticultural Society Colour Chart. The Royal Horticultural Society, London

    Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrots roots. Mol Genet Genomics 268:122–129

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1999) SAS version 8.02 for windows. SAS Institute Inc. , Cary

    Google Scholar 

  • Schwartz SH, Quin X, Zeevaart JD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1956) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  PubMed  CAS  Google Scholar 

  • Simon PW, Wolff XY (1987) Carotenes in typical and dark orange carrots. J Agri Food Chem 35:1017–1022

    Article  CAS  Google Scholar 

  • Staub JE, Sun Z, Chung SM, Lower RL (2007) Evidence for colinearity among genetic linkage maps in cucumber. HortScience 42:20–27

    CAS  Google Scholar 

  • Suyama T, Yamada K, Mori H, Takeno K, Yamaki S (1999) Cloning cDNAs for genes preferentially expressed during fruit growth in cucumber. J Am Soc Hort Sci 124:136–139

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Throup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    Article  Google Scholar 

  • Vuylsteke M, Mank R, Antosine R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubbersted T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2001–2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798

    Article  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET, Roncherford TJ (2004) QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Rajcan I (2003) Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci 43:549–555

    Google Scholar 

  • Zalapa (2005) Inheritance and mapping of plant architecture and fruit yield in melon (Cucumis melo L). PhD Dissertation, University of Wisconsin, Madison

  • Zalapa JE, Staub JE, McCreight JD (2007a) Variance component analysis of plant architectural traits and fruit yield in melon. Euphytica: on line December 2007

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas HE (2007b) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Cuevas.

Additional information

Communicated by Y. Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, H.E., Staub, J.E., Simon, P.W. et al. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117, 1345–1359 (2008). https://doi.org/10.1007/s00122-008-0868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0868-2

Keywords

Navigation