Abstract
Jet grooming is an important strategy for analyzing relativistic particle collisions in the presence of contaminating radiation. Most jet grooming techniques introduce hard cutoffs to remove soft radiation, leading to discontinuous behavior and associated experimental and theoretical challenges. In this paper, we introduce Pileup and Infrared Radiation Annihilation (Piranha), a paradigm for continuous jet grooming that overcomes the discontinuity and infrared sensitivity of hard-cutoff grooming procedures. We motivate Piranha from the perspective of optimal transport and the Energy Mover’s Distance and review Apollonius Subtraction and Iterated Voronoi Subtraction as examples of Piranha-style grooming. We then introduce a new tree-based implementation of Piranha, Recursive Subtraction, with reduced computational costs. Finally, we demonstrate the performance of Recursive Subtraction in mitigating sensitivity to soft distortions from hadronization and detector effects, and additive contamination from pileup and the underlying event.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
J. Tseng and H. Evans, Sequential recombination algorithm for jet clustering and background subtraction, Phys. Rev. D 88 (2013) 014044 [arXiv:1304.1025] [INSPIRE].
M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].
M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
G. Soyez et al., Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].
P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, PileUp Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].
D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].
J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].
CMS collaboration, Search for a Higgs boson in the decay channel H → ZZ∗ → \( q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
R. Alon et al., A data-driven method of pile-up correction for the substructure of massive jets, Phys. Rev. D 84 (2011) 114025 [arXiv:1101.3002] [INSPIRE].
D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet cleansing: pileup removal at high luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].
ATLAS collaboration, Pile-up subtraction and suppression for jets in ATLAS, ATLAS-CONF-2013-083, CERN, Geneva, Switzerland (2013).
ATLAS collaboration, Performance of pile-up subtraction for jet shapes, ATLAS-CONF-2013-085, CERN, Geneva, Switzerland (2013).
CMS collaboration, Measurement of the underlying event activity in pp collisions at \( \sqrt{s} \) = 0.9 and 7 TeV with the novel jet-area/median approach, JHEP 08 (2012) 130 [arXiv:1207.2392] [INSPIRE].
CMS collaboration, Pileup jet identification, CMS-PAS-JME-13-005, CERN, Geneva, Switzerland (2013).
CMS collaboration, Pileup mitigation at CMS in 13 TeV data, 2020 JINST 15 P09018 [arXiv:2003.00503] [INSPIRE].
ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at \( \sqrt{s} \) = 7 TeV, ATLAS-CONF-2012-066, CERN, Geneva, Switzerland (2012).
P. Hansen, J.W. Monk and C. Wiglesworth, A wavelet based pile-up mitigation method for the LHC upgrade, arXiv:1812.07412 [INSPIRE].
J. Arjona Martínez et al., Pileup mitigation at the Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019) 333 [arXiv:1810.07988] [INSPIRE].
J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].
J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].
A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].
J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].
D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].
J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].
CMS collaboration, A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet tagging, CMS-PAS-JME-09-001, CERN, Geneva, Switzerland (2009).
CMS collaboration, Search for high mass tt resonances in the all-hadronic mode, CMS-PAS-EXO-09-002, CERN, Geneva, Switzerland (2009).
CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002, CERN, Geneva, Switzerland (2013).
ATLAS collaboration, Reconstruction of high mass \( t\overline{t} \) resonances in the lepton+jets channel, ATL-PHYS-PUB-2009-081, CERN, Geneva, Switzerland (2009).
ATLAS collaboration, Prospects for top anti-top resonance searches using early ATLAS data, ATL-PHYS-PUB-2010-008, CERN, Geneva, Switzerland (2010).
Y. Cui, Z. Han and M.D. Schwartz, W-jet tagging: optimizing the identification of boosted hadronically-decaying W bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].
ATLAS collaboration, Light-quark and gluon jets in ATLAS, ATLAS-CONF-2011-053, CERN, Geneva, Switzerland (2011).
CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].
A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z + jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].
M. Backovic et al., Measuring boosted tops in semi-leptonic \( t\overline{t} \) events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].
ATLAS collaboration, Performance of boosted top quark identification in 2012 ATLAS data, ATLAS-CONF-2013-084, CERN, Geneva, Switzerland (2013).
P.T. Komiske, E.M. Metodiev and J. Thaler, An operational definition of quark and gluon jets, JHEP 11 (2018) 059 [arXiv:1809.01140] [INSPIRE].
P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].
E.M. Metodiev and J. Thaler, Jet topics: disentangling quarks and gluons at colliders, Phys. Rev. Lett. 120 (2018) 241602 [arXiv:1802.00008] [INSPIRE].
D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].
ATLAS collaboration, Measurement of jet shapes in top pair events at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, PoS DIS2013 (2013) 142 [INSPIRE].
B. Bhattacherjee et al., Quark-gluon discrimination in the search for gluino pair production at the LHC, JHEP 01 (2017) 044 [arXiv:1609.08781] [INSPIRE].
S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning, JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].
S. Egan et al., Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].
G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].
J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet constituents for deep neural network based top quark tagging, arXiv:1704.02124 [INSPIRE].
A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].
S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e+e− event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].
Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].
M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with kt clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].
A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].
J.R. Walsh and S. Zuberi, Factorization constraints on jet substructure, arXiv:1110.5333 [INSPIRE].
Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass at hadron colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].
H.-N. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].
T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].
Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite Nc, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Toward multi-differential cross sections: measuring two angularities on a single jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].
M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].
ATLAS collaboration, Jet reconstruction and performance using particle flow with the ATLAS detector, Eur. Phys. J. C 77 (2017) 466 [arXiv:1703.10485] [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].
L.G. Almeida et al., Substructure of high-pT jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Factorization and resummation for groomed multi-prong jet shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].
J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].
J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].
D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].
CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST 13 P05011 [arXiv:1712.07158] [INSPIRE].
L. Moore, K. Nordström, S. Varma and M. Fairbairn, Reports of my demise are greatly exaggerated: N-subjettiness taggers take on jet images, SciPost Phys. 7 (2019) 036 [arXiv:1807.04769] [INSPIRE].
D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, Quark-gluon tagging with shower deconstruction: unearthing dark matter and Higgs couplings, Phys. Rev. D 95 (2017) 034001 [arXiv:1607.06031] [INSPIRE].
M. Rubin, Non-global logarithms in filtered jet algorithms, JHEP 05 (2010) 005 [arXiv:1002.4557] [INSPIRE].
ATLAS collaboration, Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 08 (2019) 033 [arXiv:1903.02942] [INSPIRE].
CMS collaboration, Performance of b tagging at \( \sqrt{s} \) = 8 TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001, CERN, Geneva, Switzerland (2013).
CMS collaboration, Identifying hadronically decaying vector bosons merged into a single jet, CMS-PAS-JME-13-006, CERN, Geneva, Switzerland (2013).
G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].
C.-R. Chen, M.M. Nojiri and W. Sreethawong, Search for the elusive Higgs boson using jet structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [INSPIRE].
C. Hackstein and M. Spannowsky, Boosting Higgs discovery: the forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [INSPIRE].
J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].
L.G. Almeida et al., Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].
F. Pandolfi, Search for the Standard Model Higgs boson in the H → ZZ → \( {l}^{+}{l}^{-}q\overline{q} \) decay channel at CMS, Ph.D. thesis, ETH, Zurich, Switzerland (2012) [DOI:10.1007/978-3-319-00903-2] [INSPIRE].
CMS collaboration, Search for the Higgs boson in the \( b\overline{b} \) decay channel using the CMS detector, Nucl. Part. Phys. Proc. 273-275 (2016) 733 [arXiv:1411.4362] [INSPIRE].
CMS collaboration, Search for the standard model Higgs boson in the dilepton plus photon channel in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-17-007, CERN, Geneva, Switzerland (2018).
M. Procura, W.J. Waalewijn and L. Zeune, Resummation of double-differential cross sections and fully-unintegrated parton distribution functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].
P.T. Komiske et al., Exploring the space of jets with CMS open data, Phys. Rev. D 101 (2020) 034009 [arXiv:1908.08542] [INSPIRE].
P.T. Komiske, E.M. Metodiev and J. Thaler, Metric space of collider events, Phys. Rev. Lett. 123 (2019) 041801 [arXiv:1902.02346] [INSPIRE].
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative corrections to soft drop jet mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].
V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of the Workshop on Monte Carlo generators for HERA physics (plenary starting meeting), (1998), p. 270 [hep-ph/9907280] [INSPIRE].
ATLAS collaboration, Impact of alternative inputs and jet grooming on large-R jet performance, ATL-PHYS-PUB-2019-027, CERN, Geneva, Switzerland (2019).
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
ATLAS collaboration, Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton-proton collisions, Eur. Phys. J. C 81 (2021) 334 [arXiv:2009.04986] [INSPIRE].
P.T. Komiske, E.M. Metodiev and J. Thaler, The hidden geometry of particle collisions, JHEP 07 (2020) 006 [arXiv:2004.04159] [INSPIRE].
G. Soyez, Pileup mitigation at the LHC: a theorist’s view, Phys. Rept. 803 (2019) 1 [arXiv:1801.09721] [INSPIRE].
T. Sjostrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].
P. Kirchgaeßer, Non-perturbative models for the simulation of hadronic collisions at the LHC, Ph.D. thesis, KIT, Karlsruhe, Germany (2020) [https://doi.org/10.5445/IR/1000120873] [INSPIRE].
A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [INSPIRE].
CDF collaboration, Study of the energy dependence of the underlying event in proton-antiproton collisions, Phys. Rev. D 92 (2015) 092009 [arXiv:1508.05340] [INSPIRE].
A.J. Larkoski and T. Melia, A large-N expansion for minimum bias, JHEP 10 (2021) 094 [arXiv:2107.04041] [INSPIRE].
J. Baron et al., Soft-drop grooming for hadronic event shapes, JHEP 07 (2021) 142 [arXiv:2012.09574] [INSPIRE].
S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after soft drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
P. Komiske, PIRANHA GitHub repository, https://github.com/pkomiske/Piranha (2022).
V. Hartmann, A geometry-based approach for solving the transportation problem with Euclidean cost, arXiv:1706.07403.
V. Hartmann and D. Schuhmacher, Semi-discrete optimal transport — the case p = 1, arXiv:1706.07650.
D.P. Bourne, B. Schmitzer and B. Wirth, Semi-discrete unbalanced optimal transport and quantization, arXiv:1808.01962.
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].
T. Cai, J. Cheng, B. Schmitzer and M. Thorpe, The linearized Hellinger-Kantorovich distance, SIAM J. Imaging Sci. 15 (2022) 45 [arXiv:2102.08807].
C. Sarrazin and B. Schmitzer, Linearized optimal transport on manifolds, arXiv:2303.13901.
T. Cai, J. Cheng, N. Craig and K. Craig, Linearized optimal transport for collider events, Phys. Rev. D 102 (2020) 116019 [arXiv:2008.08604] [INSPIRE].
T. Cai, J. Cheng, K. Craig and N. Craig, Which metric on the space of collider events?, Phys. Rev. D 105 (2022) 076003 [arXiv:2111.03670] [INSPIRE].
J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge, U.K. (2013) [https://doi.org/10.1017/9781009401845] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a short distance top mass with light grooming, Phys. Rev. D 100 (2019) 074021 [arXiv:1708.02586] [INSPIRE].
ATLAS collaboration, A precise interpretation for the top quark mass parameter in ATLAS Monte Carlo simulation, ATL-PHYS-PUB-2021-034, CERN, Geneva, Switzerland (2021) [INSPIRE].
ATLAS and CMS collaborations, Recent measurements of the top-quark mass and Yukawa coupling using the ATLAS and CMS detectors at the LHC, PoS EPS-HEP2021 (2022) 479 [INSPIRE].
S. Marzani et al., Fitting the strong coupling constant with soft-drop thrust, JHEP 11 (2019) 179 [arXiv:1906.10504] [INSPIRE].
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].
Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
K. Benkendorfer and A.J. Larkoski, Grooming at the cusp: all-orders predictions for the transition region of jet groomers, JHEP 11 (2021) 188 [arXiv:2108.02779] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].
S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The principal axis of jets. An attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [INSPIRE].
E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].
S.D. Ellis et al., Qjets: a non-deterministic approach to tree-based jet substructure, Phys. Rev. Lett. 108 (2012) 182003 [arXiv:1201.1914] [INSPIRE].
S.D. Ellis, A. Hornig, D. Krohn and T.S. Roy, On statistical aspects of Qjets, JHEP 01 (2015) 022 [arXiv:1409.6785] [INSPIRE].
R. Corke and T. Sjostrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].
Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].
R. Field, Min-bias and the underlying event at the LHC, Acta Phys. Polon. B 42 (2011) 2631 [arXiv:1110.5530] [INSPIRE].
J. Campbell, J. Huston and F. Krauss, The black book of quantum chromodynamics: a primer for the LHC era, Oxford University Press, Oxford, U.K. (2018) [https://doi.org/10.1093/oso/9780199652747.001.0001] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Non-global logarithms, factorization, and the soft substructure of jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].
Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze and S.I. Troyan, Similarity of parton and hadron spectra in QCD jets, Z. Phys. C 27 (1985) 65 [INSPIRE].
B. Andersson, P. Dahlqvist and G. Gustafson, On local parton hadron duality. 1. Multiplicity, Z. Phys. C 44 (1989) 455 [INSPIRE].
M. Shifman, The quark hadron duality, eConf C030614 (2003) 001 [INSPIRE].
D. Neill, The fragmentation spectrum from space-time reciprocity, JHEP 03 (2021) 081 [arXiv:2010.02934] [INSPIRE].
Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].
M.A. Ebert and F.J. Tackmann, Resummation of transverse momentum distributions in distribution space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].
A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].
K. Konishi, A. Ukawa and G. Veneziano, Jet calculus: a simple algorithm for resolving QCD jets, Nucl. Phys. B 157 (1979) 45 [INSPIRE].
Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troian, Basics of perturbative QCD, (1991) [INSPIRE].
M. van Beekveld et al., Collinear fragmentation at NNLL: generating functionals, groomed correlators and angularities, arXiv:2307.15734 [INSPIRE].
A.J. Larkoski, An unorthodox introduction to QCD, arXiv:1709.06195 [INSPIRE].
A.J. Larkoski, Jet physics from the ground up, arXiv:2112.15122 [INSPIRE].
T. Cohen, J. Doss and M. Freytsis, Jet substructure from dark sector showers, JHEP 09 (2020) 118 [arXiv:2004.00631] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].
G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42 (2015) 103101 [arXiv:1505.04084] [INSPIRE].
C.W. Bauer and P.F. Monni, A numerical formulation of resummation in effective field theory, JHEP 02 (2019) 185 [arXiv:1803.07079] [INSPIRE].
A.C. Mattingly and P.M. Stevenson, QCD perturbation theory at low-energies, Phys. Rev. Lett. 69 (1992) 1320 [hep-ph/9207228] [INSPIRE].
P.M. Stevenson, Optimized perturbation theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].
P.M. Stevenson, The 1612 – Nf expansion and the infrared fixed point in perturbative QCD, Phys. Lett. B 331 (1994) 187 [hep-ph/9402276] [INSPIRE].
S.A. Caveny and P.M. Stevenson, The Banks-Zaks expansion and ‘freezing’ in perturbative QCD, hep-ph/9705319 [INSPIRE].
W.E. Caswell, Asymptotic behavior of non-Abelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].
T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].
S.J. Brodsky, G.F. de Teramond and A. Deur, Nonperturbative QCD coupling and its β-function from light-front holography, Phys. Rev. D 81 (2010) 096010 [arXiv:1002.3948] [INSPIRE].
A. Deur, V. Burkert, J.P. Chen and W. Korsch, Determination of the effective strong coupling constant \( {\alpha}_{s,{g}_1}\left({Q}^2\right) \) from CLAS spin structure function data, Phys. Lett. B 665 (2008) 349 [arXiv:0803.4119] [INSPIRE].
A. Deur, The strong coupling constant at large distances, AIP Conf. Proc. 1149 (2009) 281 [arXiv:0901.2190] [INSPIRE].
D. Binosi et al., Process-independent strong running coupling, Phys. Rev. D 96 (2017) 054026 [arXiv:1612.04835] [INSPIRE].
Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
Y.L. Dokshitzer and B.R. Webber, Power corrections to event shape distributions, Phys. Lett. B 404 (1997) 321 [hep-ph/9704298] [INSPIRE].
Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, Universality of 1/Q corrections to jet-shape observables rescued, Nucl. Phys. B 511 (1998) 396 [hep-ph/9707532] [INSPIRE].
G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
A. Deur, S.J. Brodsky and G.F. de Teramond, The QCD running coupling, Nucl. Phys. 90 (2016) 1 [arXiv:1604.08082] [INSPIRE].
M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].
M. Dasgupta and G.P. Salam, Accounting for coherence in interjet Et flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].
A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
R.B. Appleby and M.H. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].
H. Weigert, Nonglobal jet evolution at finite Nc, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [INSPIRE].
A. Hornig et al., Non-global structure of the \( O\left({\alpha}_s^2\right) \) dijet soft function, JHEP 08 (2011) 054 [Erratum ibid. 10 (2017) 101] [arXiv:1105.4628] [INSPIRE].
R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, Jet mass with a jet veto at two loops and the universality of non-global structure, Phys. Rev. D 86 (2012) 054017 [arXiv:1112.3343] [INSPIRE].
M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops, and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].
K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite Nc beyond leading order, JHEP 03 (2015) 094 [arXiv:1501.00475] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, The analytic structure of non-global logarithms: convergence of the dressed gluon expansion, JHEP 11 (2016) 089 [arXiv:1609.04011] [INSPIRE].
A. Banfi, F.A. Dreyer and P.F. Monni, Next-to-leading non-global logarithms in QCD, JHEP 10 (2021) 006 [arXiv:2104.06416] [INSPIRE].
S. Alipour-fard, JetMonteCarlo GitHub repository, https://github.com/samcaf/JetMonteCarlo (2022).
T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
Acknowledgments
The authors would like to express their gratitude to Matthew LeBlanc, Jennifer Roloff, and the ATLAS Jet Definitions subgroup for valuable discussions, and to Nima Zardoshti for raising insightful questions during LHCP 2022. We would also like to thank Pier Monni for helpful discussions regarding resummation, and Sean Benevedes and Rikab Gambhir for engaging conversations and careful readings of the manuscript. Finally, we extend our appreciation to an anonymous referee whose thoughtful comments and feedback contributed to improving the quality and clarity of this work and especially of section 3. This work was supported by the Office of Nuclear Physics of the U.S. Department of Energy (DOE) under grant DE-SC-0011090, by the DOE Office of High Energy Physics under grants DE-SC0012567 and DE-SC0019128, and by the National Science Foundation under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2305.00989
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Alipour-fard, S., Komiske, P.T., Metodiev, E.M. et al. Pileup and Infrared Radiation Annihilation (PIRANHA): a paradigm for continuous jet grooming. J. High Energ. Phys. 2023, 157 (2023). https://doi.org/10.1007/JHEP09(2023)157
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2023)157