Skip to main content
Log in

Jet substructure and the search for neutral spin-one resonances in electroweak boson channels

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Strongly coupled models at the TeV scale often predict one or more neutral spin-one resonances (Z′) which have appreciable branching fractions to electroweak bosons, namely the Higgs and longitudinal W and Z. These resonances are usually believed to have multi-TeV mass due to electroweak precision constraints, placing them on the edge of LHC discovery reach. Searching for them is made particularly challenging because hadronically decaying electroweak bosons produced at such high energy will appear very similar to QCD jets. In this work we revisit the possibility of discovering these resonances at the LHC, taking advantage of recently developed jet substructure techniques. We make a systematic investigation of substructure performance for the identification of highly Lorentz-boosted electroweak bosons, which should also be applicable to more general new physics searches. We then estimate the model-independent Z′ discovery reach for the most promising final-state channels, and find significant improvements compared to previous analyses. For modes involving the Higgs, we focus on a light Higgs decaying to \( b\bar{b} \). We further highlight several other novelties of these searches. In the case that vertex-based b-tagging becomes inefficient at high p T , we explore the utility of a muon-based b-tag, or no b-tag at all. We also introduce the mode \( Z^{\prime} \to Zh \to \left( {\nu \bar{\nu }} \right)\left( {b\bar{b}} \right) \) as a competitive discovery channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Rainwater, Searching for the Higgs boson, hep-ph/0702124 [SPIRES].

  2. J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].

    ADS  Google Scholar 

  3. J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].

    ADS  Google Scholar 

  4. M. Schmaltz and D. Tucker-Smith, Little Higgs Review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].

    Article  ADS  Google Scholar 

  5. H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-Dimensional Models: Phenomenological Status and Experimental Prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].

    Article  ADS  Google Scholar 

  6. K. Agashe et al., LHC Signals for Warped Electroweak Neutral Gauge Bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].

    ADS  Google Scholar 

  7. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [SPIRES].

    ADS  Google Scholar 

  8. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].

    ADS  Google Scholar 

  9. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  10. G. Brooijmans, High pT Hadronic Top Quark Identification. Part I: Jet Mass and Y Splitter, ATL-PHYS-CONF-2008-008 (2008).

  11. J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  12. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  13. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].

    ADS  Google Scholar 

  14. J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].

    Article  ADS  Google Scholar 

  15. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [SPIRES].

    ADS  Google Scholar 

  16. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  17. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].

    Article  ADS  Google Scholar 

  18. K. Rehermann and B. Tweedie, Efficient Identification of Boosted Semileptonic Top Quarks at the LHC, arXiv:1007.2221 [SPIRES].

  19. L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [SPIRES].

    ADS  Google Scholar 

  21. G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Galloway, B. McElrath and J. McRaven, Signatures of Extra Dimensions from Upsilon Decays with a Light Gaugephobic Higgs Boson, Phys. Lett. B 670 (2009) 363 [arXiv:0807.2657] [SPIRES].

    ADS  Google Scholar 

  23. J. Galloway, B. McElrath, J. McRaven and J. Terning, Gaugephobic Higgs Signals at the LHC, JHEP 11 (2009) 031 [arXiv:0908.0532] [SPIRES].

    Article  ADS  Google Scholar 

  24. M.A. Diaz and T.J. Weiler, Decays of a fermiophobic Higgs, hep-ph/9401259 [SPIRES].

  25. A. Katz, M. Son and B. Tweedie, Ditau-Jet Tagging and Boosted Higgses from a Multi-TeV Resonance, arXiv:1011.4523 [SPIRES].

  26. A. Katz, M. Son and B. Tweedie, to appear.

  27. V. Barger, P. Langacker and H.-S. Lee, Six-lepton Z’ resonance at the LHC, Phys. Rev. Lett. 103 (2009) 251802 [arXiv:0909.2641] [SPIRES].

    Article  ADS  Google Scholar 

  28. The ATLAS collaboration, J.E. Garcia, M. Lechowski, E. Ros and D. Rousseau, Search for the Decays Z H Zh and W H Wh in the Little Higgs Model Assuming m(h) = 120 GeV, ATL-PHYS-2004-001 (2004).

  29. D. Benchekroun, C. Driouichi and A. Hoummada, Search for Z′ → W W at LHC with the ATLAS Detector, Eur. Phys. J. C 3 (2001) 1.

    Google Scholar 

  30. A. Alves, O.J.P. Eboli, D. Goncalves, M.C. Gonzalez-Garcia and J.K. Mizukoshi, Signals for New Spin-1 Resonances in Electroweak Gauge Boson Pair Production at the LHC, Phys. Rev. D 80 (2009) 073011 [arXiv:0907.2915] [SPIRES].

    ADS  Google Scholar 

  31. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  32. C. Hackstein and M. Spannowsky, Boosting Higgs discovery - the forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [SPIRES].

    ADS  Google Scholar 

  33. T. Han, D. Krohn, L.-T. Wang and W. Zhu, New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].

    Article  ADS  Google Scholar 

  34. P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [SPIRES].

    Article  ADS  Google Scholar 

  35. E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [SPIRES].

    ADS  Google Scholar 

  36. E. Farhi and L. Susskind, A Technicolored G.U.T, Phys. Rev. D 20 (1979) 3404 [SPIRES].

    ADS  Google Scholar 

  37. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [SPIRES].

    ADS  Google Scholar 

  38. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  39. M. Bando, T. Morozumi, H. So and K. Yamawaki, Discriminating Technicolor Theories through Flavor Changing Neutral Currents: Walking or Standing Coupling Constants?, Phys. Rev. Lett. 59 (1987) 389 [SPIRES].

    Article  ADS  Google Scholar 

  40. V.A. Miransky, Dynamics of Spontaneous Chiral Symmetry Breaking and Continuum Limit in Quantum Electrodynamics, Nuovo Cim. A 90 (1985) 149 [SPIRES].

    Article  ADS  Google Scholar 

  41. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies from Slowly Running Couplings in Technicolor Theories, Phys. Rev. D 36 (1987) 568 [SPIRES].

    ADS  Google Scholar 

  42. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].

    Article  ADS  Google Scholar 

  43. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].

    Article  ADS  Google Scholar 

  44. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  45. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  46. H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  47. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  48. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  49. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].

    Article  ADS  Google Scholar 

  50. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  53. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  54. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  59. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/Composite Phenomenology Simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].

    Article  ADS  Google Scholar 

  60. R. Contino, Z, Z KK , Z * and all that: Current bounds and theoretical prejudices on heavy neutral vector bosons, Nuovo Cim. B 123 (2008) 511 [arXiv:0804.3195] [SPIRES].

    ADS  Google Scholar 

  61. O. Gedalia and G. Perez, TASI 2009 Lectures - Flavor Physics, arXiv:1005.3106 [SPIRES].

  62. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES].

    ADS  Google Scholar 

  63. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [SPIRES].

    ADS  Google Scholar 

  64. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].

    Article  ADS  Google Scholar 

  66. The ATLAS collaboration, ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATL-PHYS-PUB-2009-088 (2009).

  67. K. Black et al., Comprehensive multivariate discrimination and the Higgs + W/Z search, arXiv:1010.3698 [SPIRES].

  68. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better Jet Clustering Algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].

    Article  ADS  Google Scholar 

  69. M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering, hep-ph/9907280 [SPIRES].

  70. M. Rubin, Non-Global Logarithms in Filtered Jet Algorithms, JHEP 05 (2010) 005 [arXiv:1002.4557] [SPIRES].

    Article  ADS  Google Scholar 

  71. J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [SPIRES].

    Article  ADS  Google Scholar 

  72. Y. Hatta and T. Ueda, Jet energy flow at the LHC, Phys. Rev. D 80 (2009) 074018 [arXiv:0909.0056] [SPIRES].

    ADS  Google Scholar 

  73. Z. Han, private communication.

  74. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  75. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  76. S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].

  77. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  78. B. Fuks, M. Klasen, F. Ledroit, Q. Li and J. Morel, Precision predictions for Z′-production at the CERN LHC: QCD matrix elements, parton showers and joint resummation, Nucl. Phys. B 797 (2008) 322 [arXiv:0711.0749] [SPIRES].

    Article  ADS  Google Scholar 

  79. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [SPIRES].

    Article  ADS  Google Scholar 

  80. J.H. Kuhn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [SPIRES].

    Article  ADS  Google Scholar 

  81. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  82. The CMS collaboration, Search for Mono-Jet Final States from ADD Extra-Dimensions at \( \sqrt {s} = 10\;TeV \), CMS PAS EXO-09-013 (2009).

  83. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [SPIRES].

    Article  ADS  Google Scholar 

  84. The CMS collaboration, CMS Technical Design Report (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Katz.

Additional information

ArXiv ePrint: 1010.5253

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, A., Son, M. & Tweedie, B. Jet substructure and the search for neutral spin-one resonances in electroweak boson channels. J. High Energ. Phys. 2011, 11 (2011). https://doi.org/10.1007/JHEP03(2011)011

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)011

Keywords

Navigation