Skip to main content
Log in

Unsafe but calculable: ratios of angularities in perturbative QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Infrared- and collinear-safe (IRC-safe) observables have finite cross sections to each fixed-order in perturbative QCD. Generically, ratios of IRC-safe observables are themselves not IRC safe and do not have a valid fixed-order expansion. Nevertheless, in this paper we present an explicit method to calculate the cross section for a ratio observable in perturbative QCD with the help of resummation. We take the IRC-safe jet angularities as an example and consider the ratio formed from two angularities with different angular exponents. While the ratio observable is not IRC safe, it is “Sudakov safe”, meaning that the perturbative Sudakov factor exponentially suppresses the singular region of phase space. At leading logarithmic (LL) order, the distribution is finite but has a peculiar expansion in the square root of the strong coupling constant, a consequence of IRC unsafety. The accuracy of the LL distribution can be further improved with higher-order resummation and fixed-order matching. Non-perturbative effects can sometimes give rise to order one changes in the distribution, but at sufficiently high energies Q, Sudakov safety leads to non-perturbative corrections that scale like a (fractional) power of 1/Q, as is familiar for IRC-safe observables. We demonstrate that Monte Carlo parton showers give reliable predictions for the ratio observable, and we discuss the prospects for computing other ratio observables using our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973)1343 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  3. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  4. H. Georgi and M. Machacek, A simple QCD prediction of jet structure in e + e annihilation, Phys. Rev. Lett. 39 (1977) 1237 [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.L. Basham, L.S. Brown, S. Ellis and S. Love, Electron-positron annihilation energy pattern in quantum chromodynamics: asymptotically free perturbation theory, Phys. Rev. D 17 (1978) 2298 [INSPIRE].

    ADS  Google Scholar 

  6. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy correlations in electron-positron annihilation: testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Basham, L. Brown, S. Ellis and S. Love, Energy correlations in electron-positron annihilation in quantum chromodynamics: asymptotically free perturbation theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].

    ADS  Google Scholar 

  8. G. Parisi, Super inclusive cross-sections, Phys. Lett. B 74 (1978) 65 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. J.F. Donoghue, F. Low and S.-Y. Pi, Tensor analysis of hadronic jets in quantum chromodynamics, Phys. Rev. D 20 (1979) 2759 [INSPIRE].

    ADS  Google Scholar 

  10. P.E. Rakow and B. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  11. R.K. Ellis and B. Webber, QCD jet broadening in hadron hadron collisions, Conf. Proc. C 860623 (1986) 74 [INSPIRE]

    Google Scholar 

  12. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

    ADS  Google Scholar 

  13. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].

    Article  ADS  Google Scholar 

  16. JADE collaboration, S. Bethke et al., Experimental investigation of the energy dependence of the strong coupling strength, Phys. Lett. B 213 (1988) 235 [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  19. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  21. M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s}=300 \) GeV, Ph.D. thesis, Aachen TU, Aachen Germany (2000) [INSPIRE].

  22. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. T. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. R.K. Ellis, W.J. Stirling and B. Webber, QCD and collider physics, volume 8, Cambridge University Press, Cambridge U.K. (1996).

  28. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D0 collaboration, V.M. Abazov et al., Measurement of angular correlations of jets at \( \sqrt{s}=1.96 \) TeV and determination of the strong coupling at high momentum transfers, Phys. Lett. B 718 (2012) 56 [arXiv:1207.4957] [INSPIRE].

    Article  ADS  Google Scholar 

  31. ATLAS collaboration, Measurement of multi-jet cross-section ratios and determination of the strong coupling constant in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector., ATLAS-CONF-2013-041, CERN, Geneva Switzerland (2013).

  32. CMS collaboration, Measurement of the ratio of the 3-jet to 2-jet cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 702 (2011) 336 [arXiv:1106.0647] [INSPIRE].

    ADS  Google Scholar 

  33. CMS collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV and first determination of the strong coupling constant in the TeV range, arXiv:1304.7498 [INSPIRE].

  34. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-prong distribution of massive narrow QCD jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].

    ADS  Google Scholar 

  38. M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, to appear.

  41. A. Bassetto, M. Ciafaloni and G. Marchesini, Inelastic distributions and color structure in perturbative QCD, Nucl. Phys. B 163 (1980) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  42. W. Furmanski, R. Petronzio and S. Pokorski, Heavy flavor multiplicities at very high-energies, Nucl. Phys. B 155 (1979) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Konishi, Multiplicity distributions in QCD, Rutherford laboratory, U.K. (1979) [INSPIRE].

    Google Scholar 

  44. A.H. Mueller, On the multiplicity of hadrons in QCD jets, Phys. Lett. B 104 (1981) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Bassetto, M. Ciafaloni, G. Marchesini and A.H. Mueller, Jet multiplicity and soft gluon factorization, Nucl. Phys. B 207 (1982) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Seymour, Jet shapes in hadron collisions: higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R. Akhoury and V.I. Zakharov, On the universality of the leading, 1/Q power corrections in QCD, Phys. Lett. B 357 (1995) 646 [hep-ph/9504248] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y.L. Dokshitzer and B. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Y.L. Dokshitzer, G. Marchesini and B. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the universality of the Milan factor for 1/Q power corrections to jet shapes, JHEP 05 (1998) 003 [hep-ph/9802381] [INSPIRE].

    Article  ADS  Google Scholar 

  53. E. Gardi and G. Grunberg, Power corrections in the single dressed gluon approximation: the average thrust as a case study, JHEP 11 (1999) 016 [hep-ph/9908458] [INSPIRE].

    Article  ADS  Google Scholar 

  54. E. Gardi and J. Rathsman, Renormalon resummation and exponentiation of soft and collinear gluon radiation in the thrust distribution, Nucl. Phys. B 609 (2001) 123 [hep-ph/0103217] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Gardi and J. Rathsman, The thrust and heavy jet mass distributions in the two jet region, Nucl. Phys. B 638 (2002) 243 [hep-ph/0201019] [INSPIRE].

    Article  ADS  Google Scholar 

  56. C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].

    ADS  Google Scholar 

  57. G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A.V. Manohar and M.B. Wise, Power suppressed corrections to hadronic event shapes, Phys. Lett. B 344 (1995) 407 [hep-ph/9406392] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].

    Article  ADS  Google Scholar 

  62. V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].

    ADS  Google Scholar 

  63. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision thrust cumulant moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].

    ADS  Google Scholar 

  66. I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision jet substructure from boosted event shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].

    Article  ADS  Google Scholar 

  67. ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].

    ADS  Google Scholar 

  68. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  69. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  70. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    Article  ADS  Google Scholar 

  71. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  72. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  73. C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

    ADS  Google Scholar 

  74. ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].

    ADS  Google Scholar 

  75. ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].

    ADS  Google Scholar 

  76. ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-066, CERN, Geneva Switzerland (2012).

  77. ATLAS collaboration, Performance of large-R jets and jet substructure reconstruction with the ATLAS detector, ATLAS-CONF-2012-065, CERN, Geneva Switzerland (2012).

  78. ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, arXiv:1306.4945 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Larkoski.

Additional information

ArXiv ePrint: 1307.1699

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkoski, A.J., Thaler, J. Unsafe but calculable: ratios of angularities in perturbative QCD. J. High Energ. Phys. 2013, 137 (2013). https://doi.org/10.1007/JHEP09(2013)137

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)137

Keywords

Navigation