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1 Introduction

Jets of hadrons produced in high-energy particle collisions are an important guide in our
understanding of the subatomic universe and quantum chromodynamics (QCD), our fun-
damental theory of the strong nuclear force. Quantifying the internal structure of hadronic
jets plays an important role in translating between experimental results and theoretical
predictions. The toolkit of jet substructure, including techniques from jet grooming [1–7]
and pileup mitigation [8–24], helps characterize the radiation patterns produced by jets in
a wide variety of physical processes at colliders. Jet substructure can distinguish jets pro-
duced by light quarks, gluons, and the decays of electroweak bosons and top quarks [25–53],
provide accurate predictions of the behavior of boosted objects in many contexts [2, 14, 54–
93], and even reveal non-perturbative features of the infrared structure of QCD [94–98].

Jet grooming facilitates our understanding of jet substructure by removing low-energy
pollution from jets. The major goal of jet grooming is to reduce the sensitivity of jet
observables to two conceptually distinct categories of pollution:

• Soft Distortions are low-energy effects that distort the radiation coming directly
from hard jet production, such as hadronization and detector effects;

• Additive Contamination denotes a backdrop of low-energy radiation that pollutes
a jet but is not directly connected to jet production, including the pileup (PU) of radi-
ation from overlapping particle collisions and an underlying event (UE) of secondary
parton interactions.

The low-energy phenomena of QCD that produce both soft contamination and additive
contamination are notoriously difficult to model, and jet grooming has become an important
toolkit used to empower both experimental and theoretical analyses of jet substructure [1–
7, 14, 25–93, 99–101].

A complication of many popular jet grooming procedures is that they are discontinuous
in event space: they may map similar ungroomed jets, which differ only by small changes
in their distributions of energy, into extensively distinct groomed jets [3, 4]. Discontinuous
behavior in jet grooming algorithms leads in turn to undesirably sensitive responses to
low-energy pollution. Experimentally, discontinuities in grooming lead to large responses
of groomed substructure to the interactions of jets with experimental detectors, and re-
sulting difficulties in unfolding [99–101]. Theoretically, discontinuities in grooming lead to
uncertainties in fixed-order calculations [3] and complications in describing the effects of
hadronization on groomed jet substructure [96].

In this paper, we introduce Pileup and Infrared Radiation Annihilation (Piranha),
a paradigm for continuous jet grooming, using recent geometric perspectives in collider
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physics. Piranha applies intuition from optimal transport theory and the Energy Mover’s
Distance (EMD) between collider events [95, 102] to overcome the discontinuous behavior
of existing jet grooming algorithms. We introduce the new terminology of soft and angu-
lar discontinuities to categorize discontinuous behavior under infinitesimal changes to the
energies and angles of jet constituents, respectively. We explore the improved continuity
of Piranha conceptually through several toy examples, and more practically by study-
ing the responses of Piranha grooming to several sources of soft distortions and additive
contamination.

At present, Piranha has three concrete implementations:

• Apollonius Subtraction (P-AS), introduced in ref. [102], is a continuous, concep-
tually simple application of the Piranha paradigm with a computationally expensive
implementation;

• Iterated Voronoi Subtraction (P-IVS), also introduced in ref. [102], is a contin-
uous, computationally efficient modification of P-AS with a simple geometric imple-
mentation;

• Recursive Subtraction (P-RS) is a family of nearly-continuous, computationally
efficient, tree-based algorithms motivated by P-AS and P-IVS. We develop the con-
crete implementation of Recursive Subtraction with a Fraction f (P-RSFf ).
We discuss how P-RSFf is discontinuous in suppressed regions of parameter space,
and focus on P-RSFf=1/2, which is the only fully soft-continuous version of P-RSFf .

Table 1 expresses the infrared/collinear safety (using the definition of ref. [102]) and
soft/angular continuity properties of the traditional and Piranha groomers we discuss in
this paper. The soft continuity properties expressed in table 1 are simple to understand by
comparing the hard-cutoff framework of popular groomers to the subtractive framework
of Piranha. The angular discontinuities expressed in table 1 are more subtle and are
inherited from angular-ordered jet clustering. We note that the Recursive Subtraction
algorithms we introduce are discontinuous only in a highly suppressed region of phase
space, and we still find it suitable to call P-RS a family of Piranha groomers.

Popular jet grooming algorithms are soft discontinuous because they introduce hard
cutoffs on the energy of jet constituents, removing particles that are too low-energy to be
classified as important probes of hard physics; we call such groomers hard-cutoff groomers.
The modified Mass Drop Tagger (mMDT) [4], for example, requires that certain sub-jets
within a jet carry a sufficient energy fraction, z > zcut, to survive the grooming procedure.
If a sub-jet has an energy fraction near zcut, low-energy pollution may push its energy to the
other side of the cutoff, leading to soft discontinuous behavior and associated theoretical
and experimental complications. Figure 1 demonstrates this soft discontinuous behavior,
the corresponding soft continuity of P-RSFf=1/2, by comparing their action on two sets
of similar events: two toy jet events E± consisting of two particles each, and a QCD
jet produced in Pythia 8.244 along with the same QCD event with a small amount of
gaussian noise applied to the pT , rapidity, and azimuthal angle of each particle. We revisit
the events E± as tools to characterize soft discontinuity more precisely in section 3.2. The
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Safety Continuity
Groomer Acronym Infrared Collinear Soft Angular

Apollonius Subtraction P-AS ✓ ✓ ✓ ✓

Iterated Voronoi Subtraction P-IVS ✓ ✓ ✓ ✓

Recursive Sub. w/Fraction f =1/2 P-RSFf=1/2 ✓ ✓ ✓ !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△
Recursive Sub. w/Fraction f ̸=1/2 P-RSFf ̸=1/2 ✓ ✓ !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△ !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△

Soft Drop (SD), βSD > 0 SDβ>0 ✓ ✓ ✗ !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△
SD (grooming mode), βSD ≤ 0 SDβ≤0 ✓ ✗ ✗ !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△

Table 1. Safety and continuity properties of the Piranha and Soft Drop grooming algorithms
studied in this paper. The mark ✓ indicates that a groomer satisfies the associated condition, while
the mark ✗ indicates that it does not. The mark !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△ indicates that a groomer does not satisfy the
condition, but only in a boundary region of phase space that is exponentially suppressed at leading
order in perturbative QCD. The mark !△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△!△ indicates that a groomer does not satisfy the condition,
but only in a boundary region of phase space that is exponentially suppressed at leading order in
perturbative QCD.1

mMDT grooming procedure maps E+ and E− to very distinct events, and similarly maps
the noiseless and noisy QCD jets to very distinct groomed jets. We chose an unusually high
value of zcut = 0.25 when grooming the QCD events to make the discontinuity of mMDT
more apparent. We will also use Soft Drop [3], a generalization of mMDT reviewed
in section 3.1 which reproduces mMDT when a parameter βSD is set to zero, as another
example of soft discontinuous hard-cutoff grooming.

Piranha borrows technology from optimal transport to produce soft continuous, sub-
tractive jet grooming algorithms without hard cutoffs. Piranha groomers may be roughly
imagined as optimally transporting hungry piranhas to eat up delicious low-energy pol-
lution. Given an ungroomed event with energy density E0 in the pseudorapidity-azimuth
angle plane and any ansatz ρ C for the energy density of low-energy pollution, one partic-
ularly succinct Piranha algorithm is

Eg [E0] = argmin
E ′

EMDβ,R

(
E0, E ′ + ρ C

)
, (1.1)

where Eg is a groomed energy distribution, ρ C is a free input to the algorithm indicating
a model of the energy flow of the contaminating radiation (see section 2.1), and explicit
dependence on the EMD metric makes the continuity of Eg [E0] manifest.

P-AS is a direct, continuous application of eq. (1.1) with β = 1, and for which ρ C is
uniform in the pseudorapidity-azimuth plane to approximate common sources of additive
contamination such as PU and UE [23, 103–112]. P-IVS approximates P-AS and preserves

1Soft Drop with βSD ≤ 0 is not collinear safe in grooming mode, used in this work, where jets consisting
of a single particle are retained as groomed jets. Grooming mode is a natural choice in the context of pileup
mitigation (see section 3.2). Note that Soft Drop with βSD ≤ 0 is collinear safe in tagging mode, where jets
consisting of a single particle are groomed away completely.
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Figure 1. A visualization of how similar ungroomed events (first column, in black) may be
mapped discontinuously to distinct groomed jets by the hard-cutoff mMDT algorithm (Soft Drop
with βSD = 0, or SDβ=0; middle column, in blue), while the continuous P-RSFf=1/2 algorithm will
map them to similar groomed results (final column, in orange). In the first two rows, we compare
the action of mMDT and P-RSFf=1/2 on simple toy events E±, with particles visualized as arrows
whose size corresponds to their energy. In the final two rows, we compare the groomers acting
on a more realistic QCD event produced with Pythia 8.244, and on the same QCD event with
additional Gaussian noise, respectively.

its continuity. Finally, the Recursive Subtraction with a Fraction 1/2 (P-RSFf=1/2) al-
gorithm we introduce in section 2.5 furnishes, to our knowledge, the first example of a
soft continuous tree-based jet grooming algorithm; the soft discontinuities of other P-RS
algorithms occur only in highly suppressed regions of phase space.

The rest of the paper proceeds as follows: in section 2, we review the Energy Mover’s
Distance (EMD) of ref. [95], propose the Piranha paradigm for continuous jet grooming,
review the Apollonius Subtraction (P-AS) and Iterated Voronoi Subtraction (P-IVS) algo-
rithms of ref. [102], and introduce Recursive Subtraction (P-RS) with a Fraction (P-RSF)
as a new, tree-based implementation of Piranha. In section 3, we discuss the soft discon-
tinuities present in hard-cutoff groomers and P-RSF, demonstrate the soft continuity of
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P-RSFf=1/2, and examine angular discontinuity in tree-based groomers. In the remainder
of the paper, we demonstrate the soft insensitivity enjoyed by Piranha groomers over
hard-cutoff groomers through several phenomenological studies. In section 4, we compare
the responses of the hard-cutoff Soft Drop algorithm and P-RSFf=1/2 to soft distortions
from hadronization and to the removal of neutral particles, as a proxy for detector ef-
fects. In section 5, we compare the ability of Soft Drop and P-RSFf=1/2 to effectively
remove additive contamination from pileup and the underlying event. We give concluding
thoughts and avenues for future exploration in section 6, delegating discussions of Piranha
grooming in EMD mode, comparisons of other hard-cutoff and Piranha groomers, and a
first look at the perturbative structure of Piranha grooming to appendices A, B and C,
respectively. The Piranha algorithms used in our analysis are available on GitHub [113].

2 The PIRANHA paradigm for continuous grooming

This section introduces the Piranha paradigm for jet grooming, which uses optimal trans-
port to continuously remove low-energy pollution from jets. We first review the Energy
Mover’s Distance (EMD) of ref. [95], which provides a framework to introduce the principles
of Piranha groomers and to enforce their continuity. We then discuss three implemen-
tations of Piranha: Apollonius Subtraction (P-AS) and Iterated Voronoi Subtraction
(P-IVS) — both introduced in ref. [102] — and the new tree-based Recursive Subtraction
(P-RS) family of Piranha algorithms. We describe a variant of Piranha — grooming in
EMD mode — in appendix A. We end this section with section 2.7, which may be skipped
on a first reading, where we present definitions of stronger notions of continuity that could
potentially pave the way for more constrained and well-behaved strategies for continuous
grooming.

2.1 Review of the Energy Mover’s Distance

The Energy Mover’s Distance (EMD) of ref. [95] provides a quantitative measure of the
similarity between two jets. We introduce the EMD here both to facilitate our definition
of continuity in jet grooming and as a useful tool for quantifying the responses of jet
groomers to low-energy pollution. Readers familiar with the EMD should feel free to skip
to section 2.2.

The EMD is a metric on the space of collider events. Here and in the remainder of
the paper, we borrow the terminology of ref. [102] and use the terms “event” and “collider
event” to refer to the energy flow of the event, or the angular distribution of energy of its
outgoing radiation.2 The EMD may be thought of as the amount of “work” required to
rearrange one event into another. For events that consist of a finite number of outgoing

2For example, the energy flow of an event E with M outgoing particles is the angular distribution

E(n̂) =
M∑

i=1

Ei δ(n̂ − n̂i),

where Ei > 0 denotes the energy carried by particle i, and n̂i denotes its outgoing angular direction.
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particles, the EMD is defined as the solution to the optimal transport problem

EMDβ,R

(
E , E ′) = min

fij>0

M∑
i=1

M ′∑
j=1

fij

(
θij

R

)β

+

∣∣∣∣∣∣
M∑

i=1
Ei −

M ′∑
j=1

E′
j

∣∣∣∣∣∣ , (2.1)

M∑
i=1

fij ≤ E′
j ,

M ′∑
j=1

fij ≤ Ei,
M∑

i=1

M ′∑
j=1

fij = min

 M∑
i=1

Ei,
M ′∑
j=1

E′
j

 , (2.2)

where i ∈ {1, . . . , M} indicates a final-state particle of E with energy Ei, j ∈ {1, . . . , M ′}
indicates a final-state particle of E ′ with energy E′

j , and θij denotes an angular distance
between particles i and j. β > 0 and R > 0 are free parameters that control the behavior
and relative importance of the first term on the right-hand side of eq. (2.1).3

In this work, we adopt the hadronic angular measure of ref. [102], given by

θij =
√
−(ni − nj)2, nµ

i = pµ
i

ET i
= (cosh(yi), vT i, sinh(yi))µ. (2.3)

Here, nµ
i is a vector describing the motion of particle i, parameterized by its rapidity yi

and its velocity vT i in the directions transverse to the beampipe. This angular metric
reproduces the rapidity-azimuth distance between particles i and j in the small rapidity-
azimuth distance limit.4

The EMD between a groomed jet in the presence and absence of low-energy pollution
also provides an observable-independent tool for quantifying the sensitivity of jet grooming
to pollution from soft distortions and additive contamination. Since the EMD furnishes a
metric on the space of events, two events are separated by zero EMD iff they have iden-
tical energy flow, and two jets separated by zero EMD will yield the same value for every
infrared/collinear (IRC) safe observable (see Lemma 1 of ref. [102]). Further, the EMD be-
tween two events also directly bounds the differences in a large class of IRC-safe observable
quantities (Lipschitz continuous observables) between the events [95]. For example, the
EMD between a parton-level jet and the same jet after hadronization (the parton-hadron
EMD) directly bounds the difference between a large class of parton- and hadron-level IRC-
safe observables. The parton-hadron EMD is therefore a powerful, observable independent
tool for characterizing the response of a jet to soft distortions from hadronization. We use
the EMD in our analysis of grooming sensitivity to several sources of low-energy pollution
in sections 4 and 5.

3Strictly speaking, the EMD defines a metric only if 2R is greater than the maximum possible angular
distance θij . Furthermore, for β > 1, one must raise the first term of eq. (2.1) to the 1/β power. We use
the EMD without a subscript, EMD (E , E ′) to denote the EMD with β = 1 and with large enough R that
it furnishes a metric.

4Another popular choice for the form of the nµ
i is captured by

nµ

i, e+e− = pµ
i

Ei
= (1, vi)µ, (2.4)

which is a natural choice in the study of electron-positron collisions [102]. This choice reproduces the
real-space opening angle between particles i and j in the small angle limit.
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2.2 PIRANHA and continuity

Piranha grooming may be intuitively imagined as the optimal transport of a group of
hungry piranhas towards the low-energy pollution within a jet. In this analogy, henceforth
the piranha analogy, a Piranha groomer populates the η-ϕ plane with a school of piranhas,
distributed according to a particular model of the polluting energy density. When they
are given an event to groom, the piranhas discuss which piranhas will get to eat which jet
constituent; in the language of optimal transport, we say that the piranhas decide on a set
of transport plans. The piranhas then implement the plan and feed on the constituents of
the jet, or subtract the pT of each jet constituent.

Piranha grooming uses optimal transport to design continuous grooming procedures
that have reduced sensitivity to low-energy pollution. In particular, continuity requires
that minuscule changes to the jet do not dramatically change the resulting groomed jet.
In the piranha analogy, continuity emerges when the piranhas’ transport plans do not
respond dramatically to small changes in the constituents of an ungroomed jet. Since both
soft distortions and fluctuations in additive contamination may lead to small changes in an
event, continuity helps ensure that neither dramatically changes the information carried
by groomed jets.

We may use the EMD to define continuity more precisely for maps on energy flows, in
the spirit of Definition 1 of ref. [102]:

Definition 1 A map M from energy flows to energy flows is continuous at an event E if,
for any ε > 0, there exists a δ > 0 such that for all E ′,

EMD(E , E ′) < δ =⇒ EMD(M(E), M(E ′)) < ε.

We say that M is continuous if it is continuous at all events E.

Definition 1 encodes the requirement that a continuous grooming algorithm must map jets
that are infinitesimally nearby in event space to groomed results that are also infinitesimally
close.5

The EMD itself also furnishes an example of an optimal transport problem, allowing us
to immediately introduce a simple Piranha groomer. To begin, let us model the radiation
that we would like to remove from our jet as a distribution of energy ρ C in a portion
of the rapidity-azimuth (η-ϕ) plane with area A. We use ρ to indicate the mean energy
density and C to indicate a distribution modeling the shape of the contaminating radiation,
normalized such that

ρ

∫
dy dϕ C(y, ϕ) = ρA = E (2.5)

gives the total energy of the additive contamination we would like to remove. Again echoing
ref. [102], we may phrase the subtraction of the energy distribution ρ C from an event E as

5Equivalently, we may say that a grooming procedure is continuous if it maps nearby jets to nearby
groomed jets. An event E is near an open ball B if any neighborhood of E contains events in B. On the
real line, for example, the point E = 1 is near the open ball B = (−1, 1). A grooming procedure G is then
continuous if for any event E and open ball B, E is near B =⇒ G(E) is near G(B).
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the solution to the optimal transport problem

Eg[E0] = argmin
E ′

EMDβ,R

(
E0, E ′ + ρ C

)
. (2.6)

It was shown in Lemma 3 of ref. [102] that eq. (2.6) defines a subtractive algorithm that
merely decreases the energy of jet constituents, and does not add new particles to an
event. In the piranha analogy, ρ C roughly describes the distribution of our piranhas, with
a “piranha energy density” ρ, while the minimization problem of eq. (2.6) provides them
with the transport plans that guide them to subtract from the pT of jet constituents.
Furthermore, the form of Eg[E0] in eq. (2.6) is manifestly continuous due to its dependence
on the EMD metric.6

For the more complicated Piranha groomers we introduce in this paper, it will be
helpful to define two additional properties that are required by full continuity:

• Soft Continuity is the requirement that a groomer is invariant under infinitesimally
soft perturbations of the energies of jet constituents;

• Angular Continuity is the requirement that a groomer is invariant under infinites-
imally small angular changes in the directions of jet constituents.

We will see that hard-cutoff groomers and even many recursive subtraction algorithms
suffer from soft discontinuity in section 3.1 and 3.4 respectively. In section 3.5, we will
explore how tree-based grooming algorithms — hard-cutoff and Piranha alike — may
inherit angularly discontinuous behavior from angular-ordered jet clustering.7

2.3 Apollonius Subtraction (P-AS)

Apollonius Subtraction (P-AS) is a direct application of eq. (2.6), in which we take con-
taminating radiation to be uniformly distributed in a region of the η-ϕ plane bounded by
a maximum pseudorapidity, |η| < ηmax. We denote the uniform event with energy density
ρ by ρU . This has proven to be an effective model for pileup, the underlying event, and
initial state radiation [23, 103–112], and motivates our approach to jet grooming for the
remainder of the paper.

More precisely, using β = 1, R = 1, and replacing ρ C with ρU in eq. (2.6) yields
an optimal transport problem known as an Apollonius problem. The Apollonius problem
is well studied in the optimal transport literature and can be solved with an Apollonius
diagram, or additively weighted Voronoi diagram, which assigns an Apollonius region to

6While Eg[E0] in eq. (2.6) is continuous, manifest continuity due to dependence on the EMD should be
treated skeptically. For example, the “grooming procedure” associated with eq. (2.6) may not be continuous
if the arg min operation is restricted to a non-convex sub-space of the full space of events. Analogously,
f(x) = arg min

y

||x, y +1|| = x−1 is continuous as a map from R to R with the standard topology. However,

g(x) = arg min
y∈{0,1}

||x, y + 1||, which differs only by the allowed values of y in the arg min, is not.
7Collinear safety, or invariance under exact collinear splittings which replace a final-state particle of

momentum pµ by two particles with momenta λpµ and (1 − λ)pµ, is a weaker condition. Exact collinear
splittings do not change the energy distribution associated with an event; therefore, any well-defined map
on the space of particle events must be collinear safe [102].
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Cartoon of a Piranha groomer
acting on the space of energy flows

(a)

Visualization of P-AS acting on
an event generated in Pythia 8.244

(b)

Figure 2. (a) A cartoon of a generic implementation of the Piranha paradigm described by
eq. (2.6), based on a figure from ref. [102]. E ∈ Ω indicates a particular event E in the space Ω
of events to be groomed, C indicates a model energy distribution for contaminating radiation, and
ρ ∈ R parameterizes the strength of the grooming. Eq. (2.6) uses these ingredients to produce the
groomed event Eg. (b) An Apollonius diagram in the rapidity-azimuth plane, also from ref. [102],
used by the Apollonius Subtraction (P-AS) algorithm. P-AS, an implementation of the Piranha
paradigm described in section 2.3, models contaminating radiation as uniform in the rapidity-
azimuth plane C = U . The color intensity of each Apollonius region is proportional to the amount
by which the corresponding particle i is groomed, and thus to the area AApoll.

i of the region.

each particle in the event. The precise structure of the Apollonius diagram corresponding
to an event is described in a physics context in section 5.4 of ref. [102], and in the context
of optimal transport in refs. [114–116].8

P-AS may then be phrased as a constituent-level area subtraction procedure that solves
the Apollonius problem for a given event. To solve the Apollonius problem associated with
a particular Apollonius diagram, we subtract from the pT of each particle an amount
proportional to the area of its Apollonius region, pAS

T i = pT i − ρAApoll.
i . Letting zcut =

ρ Atot/pT tot, in analogy to the zcut of traditional groomers such as Soft Drop, we may
equivalently write pAS

T i = pT i−zcut pT tot AApoll.
i /Atot. In the piranha analogy, the transport

plans for an event are determined by its Apollonius diagram, and all of the piranhas within
a given Apollonius region feed on the associated jet constituent. A rigorous proof of the
continuity of P-AS is given in Lemma 3.3 of ref. [114], and a visual representation of P-AS,
taken from ref. [102], is depicted in figure 2.

8Eq. (2.6) with ρ C = ρU and arbitrary positive β also describes a valid optimal transport problem and
an associated Piranha groomer. The solution to the associated optimal transport problem is described
by a generalized Laguerre diagram [102, 116]. We leave the study of Piranha grooming motivated by
generalized Laguerre diagrams for future work.
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P-AS is closely related to constituent-level area subtraction techniques for pileup mit-
igation. Indeed, P-AS was initially introduced in the context of pileup mitigation in
ref. [102], where it was shown that in certain limits, Apollonius Subtraction aligns with the
discontinuous Voronoi Area Subtraction (VAS) procedure for pileup mitigation [8, 12, 117].
Thus, P-AS may be thought of as a continuous analog to existing techniques for constituent-
level area subtraction. P-AS also aligns in certain limits with continuum Constituent Sub-
traction (CS), a continuous but computationally expensive algorithm for the removal of
pileup [102, 118].

Unfortunately, the computational cost of finding the Apollonius diagram for a given
particle event is relatively high because we rely on directly solving the Apollonius problem
using numerical ghosts [102]: we use a uniform grid of “ghost” particles in the η-ϕ plane to
obtain the Apollonius diagram associated with a particular event computationally. Data
collection and analysis for theoretical and experimental studies at colliders motivate the
computationally efficient analogs of P-AS that we describe in the remainder of this section.9

A comparison of the runtime for our different Piranha algorithms is given in figure 17 of
appendix B.

2.4 Iterated Voronoi Subtraction (P-IVS)

Iterated Voronoi Subtraction (P-IVS) is a Piranha groomer similar to both P-AS and
VAS that overcomes the computational inefficiency of P-AS. P-IVS also uses the uniform
event ρU as a model for additive contamination, but crucially uses Voronoi diagrams rather
than Apollonius diagrams to subtract this contamination away.

Like P-AS, the amount of grooming performed by the P-IVS grooming procedure is
encoded in a parameter ρ. We may describe P-IVS quite succinctly as the solution to the
iterated series of optimal transport problems [102]:

E(n+1)
IVS = argmin

E ′
EMD(E(n), E ′ + ρ(n) U), (2.7)

with

ρ(n) = min
{

ρ −
n−1∑
i=0

ρ(i), min
i

p
(n)
T i

A
(n)
i

}
. (2.8)

The final groomed event is given by the limit of the recursive procedure in eq. (2.7),
EIVS = limn→∞ E(n)

IVS. Here, ρ(0) = 0, p
(n)
T i is the transverse momentum of particle i after n

applications of the recursive algorithm in eq. (2.7), and A
(n)
i is the Voronoi region for the

event after n applications of eq. (2.7). For example, p
(0)
T i and A

(0)
i describe the transverse

momenta and Voronoi areas of the ungroomed event.
More precisely, we may describe our ungroomed event as a collection of points in the

η-ϕ plane describing the directions of outgoing momenta, each weighted by its transverse
momentum. We may then enumerate the steps of the IVS procedure as follows:

9Another approach to developing analogs of P-AS that we do not pursue in this work is to use the
formalism of linearized optimal transport, explored mathematically in refs. [119, 120] and applied to par-
ticle collisions in refs. [121, 122], which preserves the strengths of the EMD and significantly reduces the
computational costs associated with optimal transport problems.
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1. P-IVS constructs a Voronoi diagram in the η-ϕ plane for the particles in the event.
We will label the stage of the P-IVS procedure by an integer n, starting at n = 1 and
going up to at most the number of particles in the event.

2. P-IVS modifies the pT of every particle in the event, subtracting pT proportional to
the area of the particle’s Voronoi region until a particle would be removed or the
grooming is complete:

p
(n)
T i = p

(n−1)
T i − ρ(n)A

(n−1)
i , (2.9)

with ρ(n) given by eq. (2.8).

3. If ρ −
∑n

i=1 ρ(i) > 0, P-IVS increments n by 1 and continues from Step 1 by drawing
a new Voronoi diagram for the modified event with a particle removed. Otherwise,
the grooming is complete.

As with P-AS, the simple expression of P-IVS in terms of the EMD already showcases
its continuity and connection to optimal transport. One may worry that the presence of an
infinitesimally soft particle in an event may dramatically change the Voronoi diagram for an
event, and therefore dramatically change the result of grooming using Voronoi areas. P-IVS
overcomes this challenge by only using Voronoi areas until a particle is removed; when a par-
ticle is removed from the event, P-IVS computes an updated set of Voronoi areas that do not
rely on the removed particle, continuing recursively until it has removed the correct amount
of energy. A rigorous proof of the continuity of P-IVS is given in Lemma 3.3 of ref. [114].

Unweighted Voronoi diagrams for the original event E(0) can be found efficiently, unlike
the weighted Voronoi/Apollonius diagrams needed for P-AS. Furthermore, the Voronoi
diagrams for the subtracted events E(n)

IVS used throughout the stages of the P-IVS algorithm
do not need to be computed from scratch, and can be found in constant (amortized)
time [102]. P-IVS thus retains the continuous grooming properties of P-AS while remaining
amenable to numerical computation and data collection.

2.5 Tree-based PIRANHA: Recursive Subtraction (P-RS) with a Fraction (F)

Recursive Subtraction (P-RS) is an extension of the Piranha paradigm into the space
of tree-based grooming algorithms and draws on the strengths of both hard-cutoff and
Piranha grooming. We use “Recursive Subtraction” to denote an algorithm that takes in
a binary tree of emissions describing a jet and recursively subtracts from the momenta of
its jet constituents. The dependence of P-RS on binary trees is reminiscent of many hard-
cutoff grooming strategies, which are computationally efficient and bear a close connection
to the physics of perturbative QCD [3, 123]. The subtractive nature of P-RS echoes the
area subtraction techniques of P-AS and P-IVS, which have a close connection to optimal
transport and enjoy the advantage of continuity. P-RS combines these strengths and paves
the way for Piranha groomers that are experimentally useful and theoretically tractable.

P-RS acts subtractively on jets associated with a binary tree or clustering history: a
tree structure that emerges from recursively combining jet constituents, two at a time, until
only the full jet remains. In particular, P-RS is a de-clustering algorithm on the jet tree:
it splits the full jet tree into its two sub-jets, then splits each sub-jet into two sub-jets as
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dictated by the clustering history, continuing until only final-state particles remain. In the
discussion that follows, we also refer to sub-jets in the binary tree as branches or emissions.

Following the procedures of traditional grooming algorithms such as Soft Drop [3],
the P-RS grooming algorithms we consider in this paper are angular-ordered: they act on
jets associated with a binary tree whose splittings are ordered by the angular separation
of their sub-jets. In particular, we consider jets are first clustered using the anti-kt algo-
rithm [124] and then re-clustered using the pair-wise angular-ordered Cambridge-Aachen
(C/A) clustering algorithm [125].10 C/A recursively clusters the jet constituents that are
closest in angle, so that as we de-cluster each branch of the C/A tree we recover narrower
and narrower emissions. Since the branching structure of an angular-ordered tree of emis-
sions is comparable to the history of emissions within the parton model, a phenomenon
known as coherent parton branching [123], angular-ordered grooming procedures have a
closer connection to the physics of perturbative QCD.

P-RS also takes in a total amount of transverse momenta to subtract from the clustered
jet, analogous to the choice of ρAjet in the P-AS and P-IVS algorithms. At each splitting
in the tree, P-RS assigns some amount of the grooming associated with a given branch to
its two emissions. When the de-clustering finally reaches the final-state particles of a jet,
P-RS subtracts from their transverse momenta, much like P-AS and P-IVS, by an amount
proportional to the assigned grooming.

Recursive Subtraction with a Fraction f soft. (P-RSFf , or P-RSF) is a simple im-
plementation of P-RS that does not depend on the kinematic information of each splitting.
P-RSF depends on two real parameters, each between 0 and 1:

• zcut is the fraction of transverse momentum the grooming will remove from the entire
jet, pT, P-RSF = (1 − zcut)pT, tot. We may write zcut = z

(0)
cut = ρAjet/pT, jet, in analogy

to the “piranha energy density” ρ of P-AS and P-IVS. We denote the total transverse
momentum removed from the jet as ∆(0) = zcut pT, tot, and the transverse momentum
removed from a branch i of the jet is ∆(i) = z

(i)
cut pT, tot;

• fsoft is the fraction of the grooming assigned to the softer sub-jet at each stage of the
de-clustering, as detailed below. P-RSF prefers to groom softer radiation more and
more as fsoft increases.

In the steps of the algorithm below, we index the current branch of the jet on which
P-RSF is acting by i. The softer sub-jet of branch i is denoted “i, soft”, and the harder
branch is denoted “i, hard”. If the algorithm is at its starting point and considering the
entire jet, we write i = 0.

The concrete prescription of P-RSF is as follows:

1. P-RSF attempts to de-cluster sub-jet i into two sub-jets. If this is impossible, the
branch corresponds to a final-state particle and P-RSF proceeds to Step 5.

10Starting with the anti-kt algorithm both mitigates fluctuations due to contamination in jet areas [124]
and reduces the effects of clustering logarithms in analytic calculations [3].
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2. P-RSF divides the grooming assigned to branch i between the softer sub-jet (i, soft)
and the harder sub-jet (i, hard):

∆(i, soft) = fsoft ∆(i) ∆= z
(i, soft)
cut pT, tot (2.10a)

∆(i, hard) = (1− fsoft)∆(i) ∆= z
(i, hard)
cut pT, tot, (2.10b)

so that ∆(i, soft) + ∆(i, hard) = ∆(i). In words, P-RSF assigns a fraction fsoft of the
grooming to the softer sub-jet, and the remaining fraction 1 − fsoft to the harder
sub-jet. Equivalently,

z
(i, soft)
cut = fsoftz

(i)
cut (2.11a)

z
(i, hard)
cut = (1− fsoft)z(i)

cut, (2.11b)

so that z
(i, soft)
cut + z

(i, hard)
cut = z

(i)
cut.

3. P-RSF checks if one of the sub-jets of the current branch is removed by the grooming:

(a) If the grooming assigned to the softer sub-jet is greater than its actual transverse
momentum, ∆(i, soft) > p

(i, soft)
T , P-RSF removes the softer sub-jet from the event.

P-RSF then assigns the remaining grooming to the harder sub-jet, ∆(i, hard) =
∆(i) − p

(i, soft)
T .

(b) Similarly, if the grooming assigned to the harder sub-jet is greater than its
transverse momentum, ∆(i, hard) > p

(i, hard)
T , P-RSF removes the harder sub-jet

from the event. It then assigns the remaining grooming to the softer sub-jet,
∆(i, soft) = ∆(i) − p

(i, hard)
T . This is possible only if fsoft < 1/2.

4. P-RSF implements Step 1 on the surviving sub-jets of i using the values of ∆(i, soft)

and ∆(i, hard) calculated in the previous two steps.

5. When P-RSF reaches a final-state particle (a branch that cannot be further divided),
it subtracts the grooming from its transverse momentum, effectively adjusting its
energy fraction. Explicitly,

p
(i)
T, P−RSF = p

(i)
T −∆(i). (2.12)

Here, p
(i)
T, P−RSF denotes the groomed pT of the final-state particle associated with

the current branch i. This may also be described as a shift in the fraction of the total
transverse momentum carried by the particle i,

z
(i)
P-RSF = (z(i) − z

(i)
cut)/(1− zcut), (2.13)

where the additional factor of 1− zcut is due to normalization to the groomed trans-
verse momentum.
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P-RSFf=1/2 (Balanced P-RSF)

(a)

P-RSFf=1 (example of Unbalanced P-RSF)

(b)

Figure 3. Visualization of (a) P-RSFf=1/2 and (b) P-RSFf=1 acting on a toy jet depicted as an
angular-ordered tree of emissions. The jet cone is indicated by the dashed ellipse, and the groomed
final-state particles are indicated by colored ellipses, in dark orange (P-RSFf=1/2) and green (P-
RSFf=1); the size of each circle is proportional to the groomed pT of the corresponding particle.
The grey highlights behind each emission in the tree indicate the transverse momentum subtracted
from each branch, and eventually from the final-state particles of that branch, as described in
section 2.5. The size of the grey highlights behind each final-state particle indicates the amount of
transverse momentum subtracted from that particle.

P-RSF builds on the strengths of the P-RS framework, providing a simple implemen-
tation that does not rely on detailed kinematic information. By combining the advantages
of tree-based hard-cutoff and continuous Piranha grooming paradigms, P-RS and P-RSF
offer a promising path for experimentally useful and theoretically tractable continuous
groomers. A visualization of P-RSF acting on a tree of emissions for fsoft = 1/2 (which we
also call Balanced P-RSF) and fsoft = 1 (an example of P-RSFfsoft ̸=1/2 or Unbalanced
P-RSF) is shown in figure 3.

2.6 P-RSF is (almost) continuous

P-RSF is well-defined on the space of energy distributions of particle events because it is
invariant under exactly collinear splittings. To see this, we first notice that exact collinear
splittings are infinitely narrow, and always correspond to branchings at the final layer of an
angular-ordered tree of emissions. With this in mind, let us implement an exact collinear
splitting, replacing a final-state particle i within a jet by two exactly collinear final-state
particles, “i, soft” and “i, hard”. Following the presentation of section 2.5, the transverse
momentum subtracted from the new final state particles adds up to the transverse mo-
mentum subtracted from i, ∆(i, soft) +∆(i, hard) = ∆(i). Since i, soft and i, hard are exactly
collinear, the energy distribution of i after grooming is equal to the sum of the energy
distributions for i, soft and i, hard after grooming. The result of the P-RSF grooming
procedure is therefore robust against exactly collinear splittings for any value of fsoft.

– 14 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
7

While the subtractive algorithm of P-RSF cannot be expressed simply in terms of
geometry, P-RSF echoes the features of P-AS and P-IVS that grant their continuity. For
example, Steps 3(a) and 3(b) of the P-RSF algorithm ensure that P-RSF does not assign
an area to any final-state particle that is larger than its transverse momentum.

However, P-RSF still suffers from discontinuities in suppressed regions of parameter
space. We show in section 3.4 that Unbalanced P-RSF, or P-RSF with fsoft ̸= 1/2, suf-
fers from soft discontinuities: small changes to the energy of the jet have the potential to
change which emissions of the jet are softer. The balanced recursive subtraction procedure,
P-RSFf=1/2, overcomes this weakness and is soft-continuous. Furthermore, section 3.5 dis-
cusses how recursive tree-based grooming algorithms suffer from discontinuities inherited
from pairwise clustering, leading to angular discontinuities in both Balanced and Unbal-
anced P-RSF as well as traditional grooming algorithms such as Soft Drop.

2.7 Stronger notions of continuity

As a final note for this section, we point out that there are analogs of continuity that
provide stronger constraints. One example of a stronger form of continuity is uniform
continuity:

Definition 2 A map M from energy flows to energy flows is uniformly continuous if, for
any ε > 0, there exists a δ > 0 such that for all E and E ′,

EMD(E , E ′) < δ =⇒ EMD(M(E), M(E ′)) < ε.

Roughly, we might say that uniform continuity requires that when we pick ε, M must be
“continuous with the same δ for every event”.

An even stronger condition is that of Hölder continuity:

Definition 3 A map M from energy flows to energy flows is Hölder continuous with ex-
ponent α ∈ R if, for all E and E ′,

EMD(M(E), M(E ′)) < K ·
(
EMD(E , E ′)

)α
,

with K ∈ R a constant. The special case α = 1 is called Lipschitz continuity.

Placing stronger constraints on grooming, such as uniform continuity and Hölder con-
tinuity, has the potential to further constrain the effects of soft contamination and fluctua-
tions in additive radiation on groomed results. For example, in which regions of parameter
space are the hard-cutoff or Piranha groomers presented in this paper uniformly or Hölder
continuous? Are other methods for continuous grooming, such as EMD-mode Piranha
introduced in appendix A or Piranha groomers designed using linearized optimal trans-
port [119–122], more amenable to strongly continuous generalizations? Can this knowledge
help us identify obstacles to achieving these stronger types of continuity and guide us in
designing more powerful, robust observables and groomers?

Though we do not investigate grooming methods that utilize these more restrictive
analogs of continuity in this work, the invention and understanding of such groomers offer
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an intriguing and promising avenue for future research. Instead, the remainder of this work
is devoted to introducing hard-cutoff grooming, examining the types of discontinuities that
may emerge in jet grooming, and studying the sensitivity of the continuous groomers we
introduced in this section to important examples of low-energy pollution that appear in
the study of particle collision data.

3 Discontinuities in grooming

In this section, we begin by reviewing the hard-cutoff Soft Drop grooming algorithm (sec-
tion 3.1). We then compare the leading order (LO) soft continuity properties of Soft Drop
and Recursive Subtraction both conceptually (section 3.2) and through a perturbative
calculation (section 3.3).

In section 3.4 and 3.5, we explore potential challenges to continuity that can arise in
more intricate scenarios. Specifically, we discuss suppressed soft discontinuities that emerge
in Unbalanced Recursive Subtraction (section 3.4) and angular discontinuities induced by
angular-ordered jet clustering that emerge beyond LO in tree-based grooming algorithms
(section 3.5). We do not delve into the mathematical intricacies or perturbation theory of
these examples, and they may be skipped on an initial reading.

3.1 Review of hard-cutoff grooming: soft drop

A common and elegant approach to jet grooming is to provide a hard cutoff on the en-
ergy of the radiation within a jet; this approach retains high-energy information, removes
radiation that may be sensitive to soft distortions or due to additive contamination, and
even facilitates perturbative calculations of jet substructure observables. In this section,
we review a commonly used hard-cutoff grooming algorithm: the Soft Drop de-clustering
algorithm [3]. Readers familiar with Soft Drop may skip to section 3.2, where we discuss
the soft discontinuities of the Soft Drop algorithm.

The Soft Drop de-clustering algorithm is tree-based, computationally efficient, and
serves as a representative example of a hard-cutoff grooming algorithm. Much like P-RSF,
Soft Drop begins with an angular ordered tree of emissions and grooms at each branch of
the tree. For Soft Drop, however, the parameter zcut provides a hard cutoff, and Soft Drop
sometimes maps similar events into groomed events that are very distinct. The resulting
discontinuity in the grooming procedure leads to theoretical challenges and uncertainties,
unpredictable and non-linear responses to non-perturbative physics, and difficulties in in-
terpreting experimental data [99–101].

The Soft Drop algorithm depends on two parameters. The first, zcut, is a hard cutoff
that parameterizes the strength of the grooming. The second, βSD, is a parameter that con-
trols the angular dependence of the grooming procedure. Soft Drop preferentially removes
soft radiation at wider and wider angles as βSD is increased.

Soft Drop acts on a jet with characteristic radius R0 that is first clustered using an
algorithm such as the anti-kt algorithm, and then re-clustered with the Cambridge-Aachen
(C/A) algorithm. As in section 2.5, this produces a binary tree of clustered particles within
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the jet, such that particles deeper in the tree tend to be closer in angle. Soft Drop then
implements the following algorithm:

1. The most recent stage of the C/A clustering is undone, breaking the jet into two
sub-jets.

2. The softer sub-jet is removed from the jet if it is not energetic enough to be
considered relevant to the hard physics under study; in particular, let zsoft =
min(pT,1, pT,2)/(pT,1+pT,2) denote the fraction of the pT carried by the softer sub-jet,
and let θ denote the angular distance between the two sub-jets. If the two sub-jets
pass the Soft Drop grooming criterion:

zsoft > zcut

(
θ

R0

)βSD

, (3.1)

the grooming procedure is stopped. The two sub-jets are then re-merged and labeled
as the groomed jet without further modification.

3. If the inequality of eq. (3.1) is not satisfied, the softer sub-jet is not energetic enough
to be considered relevant to the hard physics of jet production. In this case, the
softer of the two sub-jets is removed from the event and the procedure is repeated
recursively by de-clustering the harder of the two sub-jets.

In this work, we use Soft Drop in grooming mode: if Soft Drop reaches a final-state particle
that cannot be de-clustered as required by Step 1, we keep it as the groomed jet. Tagging
mode would instead remove it from the jet entirely and leave a groomed event with no
particles [3].

Grooming mode is a natural choice in the context of pileup mitigation because of
the extreme behavior of tagging mode, which completely eliminates a single particle jet
even when zcut = 0. In particular, if we have an event in which we estimate there is no
contamination from pileup (see section 5.1), we want to avoid grooming the jet at all and
correspondingly set zcut = 0. For a tree-level jet, consisting of a single quark, grooming
mode respects our wish to leave the jet untouched, while tagging mode would nonetheless
remove it entirely.

Soft Drop de-clustering is a generalization of the modified Mass Drop Tagger (mMDT)
algorithm [4], and reproduces mMDT when βSD = 0. Soft Drop has seen success in a wide
variety of phenomenological applications, such as the characterization of boosted objects [2,
14, 25–93] and the extraction of parameters of the Standard Model, such as the top quark
mass [126–128] and the strong coupling constant [129], from particle collision data.

Soft Drop with βSD > 0 is collinear safe (invariant under exactly collinear splittings),
and is therefore well-defined on the space of energy flows. However, when βSD ≤ 0, Soft
Drop in grooming mode is not collinear safe. The lack of collinear safety in grooming mode
can be quickly derived when considering a collinear splitting with z < zcut which fails the
Soft Drop criterion. A similar problem emerges if one makes appropriate definitions for the
algorithm in the limit θ → 0, and Soft Drop in grooming mode is also not collinear safe when
βSD < 0. Therefore, Soft Drop in grooming mode with βSD ≤ 0 is not well-defined as a map
on the space of energy distributions, and we do not consider it in the remainder of the paper.
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E+

E−

Ungroomed

zcut

zcut

z
+ >

z cu
t

z
− <

z cu
t

zhard

zhard

Soft Drop, βSD = 0

∆E+
SD = 0

∆E−
SD ∼ Qz−

z′hard < zhard

P-RSF (arb. fsoft)

∆E+
P9RSF ∼ Qzcut

∆E−
P9RSF ∼ Qzcut

z′hard < zhard

Event
Space

Ehard

Esoft

Qzcut

E−

E+
O(δ)

Ehard

Esoft

E−

E+

O(zcut) ≫ δ

Ehard

Esoft

E−

E+
O(δ)

Figure 4. A cartoon comparing the discontinuous action of hard-cutoff grooming to the continuous
action of Piranha on the nearly identical two-particle events with energy Q, E+ and E−. We use
Soft Drop (with βSD = 0) and P-RSF (with arbitrary fsoft) with a grooming parameter zcut as
representative examples of the hard-cutoff and Piranha paradigms, respectively. The events E±

differ only by the energy fraction of the softer particle, z± = zcut ± δ/2, and are separated by an
infinitesimal EMD, EMD(E+, E−) ∼ δ ≪ zcut. Despite their similarity, Soft Drop maps the events
to distinct groomed results separated by a large EMD: EMD(E+

SD, E−
SD) ∼ zcut ≫ δ. P-RSF instead

maps the events continuously to infinitesimally similar groomed events: EMD(E+
P9RSF, E−

P9RSF) ∼ δ.
∆E±

G indicates the amount of energy removed from the event E± by the groomer G.

3.2 An invitation to soft discontinuities: soft drop versus P-RS

Traditional groomers are discontinuous in the regions of parameter space near a hard
cutoff. For example, Soft Drop is discontinuous in the region of parameter space where
zsoft = zcutθ

βSD/RβSD
0 due to the Soft Drop criterion of eq. (3.1). In this subsection, we

discuss the discontinuity of hard-cutoff grooming and the relative continuity of Piranha.
The following discussion centers around the illustrative example shown in figure 4,

which shows the simplest instance of discontinuous behavior near a hard cutoff as well
as the resolution offered by Piranha. In this example, we consider two nearly identical
events, E+ and E−, that each contain two particles. The softer constituent of E+ has an
energy fraction z+ = zcut + δ slightly above the grooming parameter zcut, while the softer
constituent of E− has an energy fraction z− = zcut−δ slightly below zcut. The energy flows
of the two events are nearly indistinguishable, in the sense that EMD(E+, E−) ∼ δ, and we
choose δ for consistency with Definition 1. We use Soft Drop with βSD = 0, or mMDT,
as a representative example of hard-cutoff grooming, and P-RSF with arbitrary fsoft as a
representative example of the Piranha paradigm; for each, we use the parameter zcut.

Soft Drop treats E+ and E− very differently: it does not modify E+, but completely
removes the softer particle of E−. The energy flow of E+ is unchanged, while that of
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E− is changed dramatically, and the EMD between the groomed jets is relatively large:
EMD(E+

SD, E−
SD) ∼ zcut ≫ δ. Direct application of Definition 1 to our example shows that

Soft Drop is discontinuous.11 Since the events E+ and E− differ by small changes to the
energy of jet constituents, we see that Soft Drop is soft discontinuous in the region of
parameter space near the cutoff zcut.

The procedure of P-RSF is quite different. When grooming both events, P-RSFf=1/2
grooms the energy of both emissions by the same amount, leading to no large discrepancy
in the two groomed results. Indeed, after the P-RSFf=1/2 grooming procedure, these two
events are still separated by an infinitesimal EMD: EMD(E+

RSF, E−
RSF) ∼ δ. This simple

example demonstrates how hard-cutoff grooming methods may discontinuously map two
nearly identical events into vastly different groomed results, and showcases the soft contin-
uous resolution of the P-RSFf=1/2 grooming procedure and other Piranha groomers.

3.3 Soft discontinuities in perturbation theory: soft drop versus P-RS

Next, we examine the manifestations of the soft discontinuous behavior of hard-cutoff
grooming more quantitatively by comparing Soft Drop and P-RSF at leading order in
perturbation theory (LO). In particular, we examine the LO effects of discontinuity on the
distributions of the two-prong generalized energy correlation functions (ECFs) of ref. [39].
For jets that are central (y = 0) and narrow (R0 ≪ 1), we may write the ECFs in the form

C
(ς)
1 ≃ 1

2

M∑
i=1

M∑
j=1

zizj

(
θij

R0

)ς

, (3.2)

up to non-singular corrections in powers of the jet radius, which we neglect [3]. In eq. (3.2),
zi represents the fraction of the jet energy carried by particle i, θij indicates the angle
between particles i and j, R0 indicates the jet radius, and the sum is over all particles in
the groomed jet.

In our discussion below, we focus on the calculation of LO substructure because it
demonstrates the effects of the discontinuity of Soft Drop and the continuity of Piranha
in a simple context. We provide a more detailed description of our LO calculation of
Piranha-groomed substructure in appendix C.1, and extend our substructure analysis to
leading logarithmic (LL) accuracy in appendix C.3. The resummed analysis of appendix C.3
does not change the qualitative conclusions of our discussion below. However, it highlights
subtleties in systematically improving our resummed substructure calculations due to the
global, subtractive nature of Piranha grooming. In appendix C.2, we also discuss the
calculation of the groomed energy fraction zg — another common observable used in the
study of jet grooming — which exhibits similar subtleties. Therefore, while our resumma-
tion does not change the qualitative conclusions of the following discussion, it indicates

11We note that Soft Drop with β ̸= 0 is also soft discontinuous. Indeed, the above arguments still hold
for the case β ̸= 0, verbatim, when the angle between the particles of E± is fixed to θ = R0. As expressed
in eq. (3.1), the Soft Drop criterion at this fixed angle is still zsoft > zcut. However, since Soft Drop with
β ̸= 0 drops the softer particle if it does not satisfy z/θβ > zcut/Rβ

0 , we may also say that Soft Drop with
β ̸= 0 is “z/θβ-discontinuous”, where z-discontinuity indicates the soft discontinuity for the case of β = 0
that we discuss above.
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that the computation of resummed Piranha observables at higher accuracy may require
new calculational tools.

At LO, the emission of a single parton with energy fraction z and angle θ is described
approximately by the pseudo-probability distribution

αs

π
pi(z)

1
θ
≈ 2CRiαs

π

1
z

1
θ

, (3.3)

where pi(z) is a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting func-
tion [131–133] describing the splitting of a mother parton i, and CRi is the quadratic
Casimir for the SU(3) color representation Ri of the mother parton. CF = (N2

C −
1)/(2NC) = 4/3 for quarks and CA = NC = 3 for gluons. We are interested in particular
in the reduced splitting functions,

pi(z) = pi(z) + pi(1− z), (3.4)

where z ∈ (0, 1/2). Reduced splitting functions are relevant for our groomed calculations
because they describe the energy distribution of the softer of the two partons after the
splitting.

The probability distribution of C
(ς)
1 for Soft Drop was studied in ref. [3], which found,

for βSD > 0, the LO result

ρi, SD(C(ς)
1 ) ≈ 2αsCRi

πς

1
C

(ς)
1

×

− logC
(ς)
1 + Bi, C

(ς)
1 > zcut;

− βSD
ς+βSD

logC
(ς)
1 − ς

ς+βSD
log zcut + Bi, C

(ς)
1 < zcut,

(3.5)

away from C
(ς)
1 = 0, up to O(α2

s) and terms that are power suppressed in C
(ς)
1 , zcut, or

both. Bi is a factor due to hard-collinear pieces of the splitting function that are not
singular as z approaches 0: Bq = −3/4 for quarks and Bg = −11/12 + nf /(6CA) for
gluons, where nf is the number of active quark flavors. The case βSD < 0 leads to an
identical result up to another constraint on C

(ς)
1 , which simply multiplies the expression

above by Θ(C(ς)
1 > z

ς/|βSD|
cut ).

The piece-wise behavior of eq. (3.5) and the associated kink in the Soft Drop C
(ς)
1

distribution are due to the discontinuous behavior of Soft Drop. As noted by ref. [3],
when βSD ≥ 0 any two-parton configurations with C

(ς)
1 = z (θ/R0)ς > zcut must have

z (θ/R0)βSD > zcut, and are therefore not affected by Soft Drop. On the other hand,
configurations with C

(ς)
1 < zcut may be Soft Dropped, leading to the piece-wise change in

groomed substructure in this region of phase space.
We discuss the calculation of the C

(ς)
1 distribution for P-RSF groomed jets in ap-

pendix C.1, where we find the LO result

ρi, P-RSF(C(ς)
1 ; f) ≈ 2αsCRi

ς π

1
C

(ς)
1

(
− log

(
C

(ς)
1 + f zcut

)
+ Bi

)
, (3.6)

away from C
(ς)
1 = 0, using the same factors of Bi as for Soft Drop, and up to terms that

are power-suppressed in C
(ς)
1 , zcut, or both.12

12We include some additional power-suppressed terms and additional contributions when C
(ς)
1 = 0 in the

LO discussion of appendix C.1.
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Notably, the P-RSF distribution for C
(ς)
1 is smooth and does not need to be defined in a

piece-wise fashion. Even at LO, the subtractive nature of P-RSF leads to a smooth interpo-
lation between double-logarithmic behavior at large C

(ς)
1 and single-logarithmic behavior at

small C
(ς)
1 .13 Much as the kink in the Soft Drop distribution can be attributed to the sud-

den activation of the grooming procedure in certain regions of phase space, the smoothness
of the P-RSF distribution reflects in part that the grooming procedure is always active.14

While the piece-wise behavior of Soft Drop observable distributions is smoothed out by all-
orders effects [134], the smoothness of P-RSF observable distributions at LO is a manifes-
tation of the subtractive behavior of P-RSF that ensures its continuity on two-parton jets.

We also note that the substructure distributions of other Piranha grooming proce-
dures can be calculated at LO with a similar method by upgrading fsoft to a function of z

and θ. Further, we expect that such an f(z, θ) may be well approximated by f(0, 0), with
sub-leading corrections proportional to O(z, θ, zcut).

In our discussion above, we emphasized that the kinks in Soft Drop groomed substruc-
ture distributions are manifestations of the discontinuity of Soft Drop itself. Generalizations
of these arguments, however, must be verified carefully. In particular, there is not generi-
cally a one-to-one correspondence between kinks in distributions and discontinuities in the
associated observable. As a toy one-dimensional example, consider a random variable X

that is uniformly distributed in (−1/2, 1/2). The discontinuous, “zig-zagging” function
f(X) = X ± 1/2, choosing the upper sign for X < 0 and the lower sign for X > 0, is
uniformly distributed. Therefore, discontinuous functions on our toy “phase space” — the
domain of X — do not necessarily have kinks in their distributions. Conversely, there is a
kink in the distribution of f(X) = ∓(1−

√
1± 2X)/2, where we take the upper sign when

X < 0 and the lower sign for X ≥ 0, even though f(x) is a continuous function of x and
has a continuous first derivative.

3.4 Suppressed soft discontinuities in unbalanced P-RS

Unbalanced P-RSF algorithms are also discontinuous in the suppressed region of parameter
space where z = 1/2.15 The discontinuous behavior emerges because Unbalanced P-RSF
algorithms treat harder and softer sub-jets differently; since an infinitesimally soft pertur-
bation can lead to either sub-jet having more energy when z = 1/2, an infinitesimal change
in an ungroomed energy flow can lead to macroscopic differences in groomed results. In
the language of section 2.2, we say that Unbalanced P-RSF is soft discontinuous in the
suppressed, measure zero region of parameter space where z = 1/2, and that Balanced
P-RSF is the only soft continuous P-RSF algorithm.

13The terms “double logarithmic” and “single logarithmic” here refer to the behavior of the LO cumulative
distribution function. In particular, we note that when C

(ς)
1 ≫ f zcut, the pseudo-probability distribution

ρ ∝ log (C) /C demonstrates double-logarithmic behavior. On the other hand, when 0 < C
(ς)
1 ≪ f zcut, the

distribution ρ ∝ log (f zcut) /C demonstrates single-logarithmic behavior.
14We say that the smoothness of P-RSF only reflects the global activity of the grooming in part because

we expect that Piranha groomers that turn on gradually will also have smooth substructure distributions.
15The probability density of seeing a softer sub-jet with energy fraction z scales as 1/z at leading loga-

rithmic accuracy in perturbative QCD. Therefore, the region with z ∼ 1/2 at the boundary of the jet phase
space is far less populated than the regions of phase space near a hard-cutoff with z ∼ zcut < 1/2.
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∆θ0/R ∼ O(δ) ∆θg/R ∼ 2 zcut
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Figure 5. A cartoon demonstrating the soft discontinuity of P-RSF for fsoft ̸= 1/2 acting on the
nearly identical events E(high,low), each with two particles with nearly identical energy fractions,
z ∼ 1/2, and with opening angle R. Red denotes the event E(high), blue denotes E(low), and a thick
dotted arrow indicates the jet axis for each event. The hardest particle of E(high) is its upper particle,
while the hardest particle of E(low) is its lower particle. Since P-RSF with fsoft ̸= 1/2 preferentially
subtracts radiation from the softer particle of each event, the events are mapped discontinuously to
distinct groomed results. The discontinuous behavior of the groomed jet axis is one manifestation
of this soft discontinuous behavior: while the ungroomed energy-weighted jet axes of E(high) and
E(low) differ by an infinitesimal amount (∆θ0 ∼ Rϵ), the groomed jet axes are widely separated for
any fsoft ̸= 1/2.

In the following discussion, we explore the soft discontinuity of Unbalanced P-RS in
the context of a jet containing only two partons. We find that the discontinuity at z = 1/2
can lead to macroscopic changes to the groomed jet axis. However, only the orientation
of the jet is affected by the soft discontinuity in our two-parton example, and the soft
discontinuity of Unbalanced P-RS is not reflected at LO by traditional jet substructure
variables. Nonetheless, important features of a jet, such as its thrust axis [136, 137],
are susceptible to discontinuities at LO. Furthermore, even traditional jet substructure
observables are impacted by the soft discontinuity of Unbalanced P-RS in three-parton jet
configurations that emerge beyond LO.

In the example of figure 5, we explore the effect of the soft discontinuity of Unbalanced
P-RSF on the axis of a jet. In particular, we examine nearly identical two-parton jets in the
region of phase space near z ∼ 1/2 that differ only by an infinitesimally soft perturbation.
We denote these events by E(i), where i ∈ {high, low}. The E(i) each consist of two particles:
a “high” and “low” particle separated by an angular distance R. In E(i), particle i has just
slightly more energy, zi = 1/2 + δ.

For simplicity, we focus on the discontinuous behavior of the energy-weighted jet axis,

n̂jet ∝ zhighn̂high + zlown̂low, (3.7)

for the groomed events E(i), and the proportionality holds up to normalization. Since

– 22 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
7

the ungroomed E(i) are nearly identical, the angle between the ungroomed jet axes is
infinitesimally small:

∆θ0 = 2R δ +O(R3, δ3), (3.8a)
lim
δ→0

∆θ0 = 0, (3.8b)

where ∆θ0 indicates the angle between the jet axes of E(high) and E(low) before grooming.
After the application of P-RSF, however, the softer branch of each event will be dramati-
cally diminished, and there is a large angle between the two groomed jet axes:

lim
δ→0

∆θg = 2R
zcut

1− zcut
|fsoft − 1/2|+O(R3) ̸= 0, (3.9)

where ∆θg indicates the angle between the jet axes of E(high) and E(low) after grooming
with P-RSF. The continuous behavior indicated by limδ→0 ∆θ0 = 0 before grooming is in
sharp contrast to the discontinuous behavior after grooming, limδ→0 ∆θg ̸= 0. In eq. (3.9),
we have assumed that max(f, 1−f) zcut < 1/2−δ, so that neither particle is fully removed
from the event. Of course, when fsoft = 1/2, the grooming algorithm treats the harder and
softer sub-jets equally, so that we once again have ∆θg → O(δ) and the soft discontinuous
behavior fades away.

This simple example demonstrates a general principle for designing Recursive Subtrac-
tion algorithms: if they are to be soft-continuous, they must treat the softer and harder sub-
jets identically in the limit z → 1/2. For example, let us imagine a P-RSF-type grooming
algorithm with fsoft upgraded to a function of the energy fraction z and angle θ of a branch,
fsoft → f(z, θ). Any P-RSF-type groomer with f(1/2, θ) = 1/2 overcomes the soft disconti-
nuity discussed of the discussion above. We call such P-RS groomers that treat emissions in
the region z = 1/2 identically “Hard-Balanced” Recursive Subtractors, as they are balanced
in the region of phase space where two sub-jets are equally hard. A P-RSF algorithm with
f(z, θ) = 1−z, for example, is Hard-Balanced, and still preferentially grooms infinitesimally
soft radiation. We leave the study of Hard-Balanced Recursive Subtractors to future work.

Finally, we note that while the soft discontinuity we detailed above is an important
formal feature of P-RSF, the regions of phase space where z ∼ 1/2 contribute far less to
observable distributions than those for which z ∼ zcut. In particular, the pseudo-probability
distribution for z scales as 1/z in perturbative QCD, implying that the soft discontinuity of
Unbalanced P-RSF that we explore above is suppressed relative to the soft discontinuities
of hard-cutoff groomers such as Soft Drop. Indeed, the soft discontinuities of P-RSF do not
manifest in leading logarithmic substructure distributions, and we may even use P-RSF
with fsoft ̸= 1/2 to gain perturbative insight into the soft continuous analog, P-RSFf=1/2,
and into Piranha grooming in general; we explain this reasoning in more depth and pursue
this goal in appendix C.

On the other hand, soft discontinuities associated with hard cutoffs in traditional
grooming procedures lie on the interior of the jet phase space, straddled by the regions
0 < z < zcut and zcut < z < 1/2. As we saw in section 3.3, the associated soft discontinuities
lead to piece-wise definitions of groomed observable distributions even at LO to isolate the
behavior of radiation above and below the associated hard cutoff.
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(a) (b)

Figure 6. A visualization of angular discontinuity in tree-based grooming in the style of figure 3,
with the angular-ordered P-RSFf=1/2 algorithm as a representative example. The thick dashed
line in the center of the jet is equidistant in angle from the left and right sub-jets of the event,
and the middle emission lies nearly on this line. In (a), the middle emission lies closer to the left
sub-jet, and the right sub-jet is therefore groomed more. In (b), the middle emission is closer to
the right sub-jet, and the left sub-jet is groomed more. We see that a small change in the angle
of the middle emission may drastically change the clustering history of the jet, and the result of a
tree-based grooming procedure.

3.5 Clustering discontinuities beyond leading order in tree-based grooming

Recursive tree-based grooming algorithms also suffer from clustering discontinuities, or
discontinuities inherited from the procedure of clustering the jet into a tree of emissions (as
discussed in section 2.5). Clustering discontinuities are inevitable in tree-based grooming
because any clustering algorithm relies on the discontinuous notion of which particles are
“closest” to one another. However, since there is only one way to cluster a two-parton jet,
clustering discontinuities only emerge beyond LO and when a jet contains three or more
partons.

Soft Drop and P-RSF in particular suffer from an angular clustering discontinuity.
Both rely on an angular-ordered jet clustering history obtained from the angular-ordered
C/A clustering algorithm; the notion of the C/A clustering history is discontinuous because
small changes to the angles of jet constituents may lead to distinct clustering histories. In
the language of section 2.2, we say angular-ordered clustering algorithms and angular-
ordered, tree-based grooming algorithms are angularly discontinuous in a measure zero
region of phase space.

In our discussion, we focus on a simple manifestation of angular clustering discontinu-
ities in the three-parton jet shown in figure 6. In particular, we consider the region of phase
space where a particular sub-jet is nearly equidistant from a sub-jet on the left and another
on the right. We call the left and right sub-jets L and R, and we denote the equidistant
emission as M , for “middle”.

A small change in the location of emission M may lead to distinct C/A clustering
histories. If M is slightly closer to the left emission L, then L will receive a quarter of the
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total grooming while R will receive half (as in figure 6a); the result is that L is groomed
less than R, and much more of the structure of the left side of the jet is preserved after the
grooming. Alternatively, if M is slightly closer to the right, then R will be groomed less than
L; the right side of the jet will be preserved while much of the left side will be groomed away
(as in figure 6b). Despite the similarity of the ungroomed events, the resulting groomed
events will have macroscopic differences and be separated by a relatively large EMD.

To emphasize this point quantitatively, let us consider P-RSF acting on the simple
example where all three emissions lie in a plane, the left and right emissions each have an
energy fraction zℓ = zr = z0, and the middle emission — nearly equidistant from the left
and right emissions — has zm = 1 − 2z0.16 We use R to denote the angle between the
left and right emissions, and δ to denote a small perturbation in the angle of the middle
emission: θℓm = R/2+ δ in one event, while θℓm = R/2− δ in the other. We again examine
the discontinuity in the energy-weighted jet axis, which takes the more general form

n̂jet ∝
∑

i

zin̂i, (3.10)

where the proportionality holds up to normalization. A simple computation then yields

∆θ0 = 2 zm δ +O
(
R2, δ3

)
, (3.11a)

lim
δ→0

∆θ0 = 0, (3.11b)

for the angle ∆θ0 between the two jet axes before grooming, while

lim
δ→0

∆θg = R
zcut

1− zcut
|f(f − 3) + 1|+O(R3) ̸= 0, (3.12)

for the angle between the two jet axes after the application of P-RSF, where we have
assumed that zcut is sufficiently small that all particles survive the grooming. We again see
a discontinuous behavior in the energy-weighted axis of the groomed jets, limδ→0 ∆θg ̸= 0,
despite the fact that the ungroomed events were nearly identical and limδ→0 ∆θ0 = 0.

Fortunately, the angular discontinuities associated with tree-based clustering algo-
rithms are also suppressed in the phase space of perturbative QCD. First, we note that the
angular discontinuities in angular-ordered clustering algorithms emerge only at higher or-
ders of perturbative accuracy for which a jet has three or more constituents. These regions
of phase space are generically suppressed in high-energy QCD calculations, where the emis-
sion of extra final-state partons is suppressed by the strong coupling constant αs. Further-
more, perturbative QCD predicts a strong hierarchy in the angles between different emis-
sions in a jet, θ1 ≫ θ2 ≫ · · · [123]. Therefore, even among phase space configurations with
three or more constituents, it is very unlikely in perturbative QCD to find a configuration
in which a particular final-state particle lies nearly equidistant in angle between two others.

16We focus on P-RSF in this example to avoid the more complex analysis required for Soft Drop that may
obfuscate the physics at hand. Soft Drop also exhibits an angular clustering discontinuity that can be seen
in the context of this simple example, but that is complicated by the possible behaviors of the grooming:
zcut and z0 may conspire such that zero, one, or two emissions are groomed from the event. The effects of
the clustering discontinuity on the energy-weighted jet axis must therefore be considered piece-wise in the
(zcut, z0) parameter space.
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We also emphasize that the angular discontinuity of the C/A clustering algorithm
is representative of more general discontinuities in tree-based clustering and in jet algo-
rithms.17 For example, the kt and anti-kt algorithms exhibit a similar kt discontinuity by
identical arguments. Discontinuities of different clustering algorithms may be more or less
suppressed in the phase space of perturbative QCD, or more or less sensitive to particular
sources of low-energy pollution. Therefore, a more detailed discussion of clustering discon-
tinuities and re-clustering schemes that minimize their effects is a potential direction for
future research.

4 Responses of grooming to soft distortions

We now compare the responses of Piranha and traditionally groomed jets to soft distor-
tions in more detail, focusing first on hadronization and then on the exclusion of neutral
particles as a simplified probe of smearing effects. In particular,

• We use P-RSFf=1/2 as a representative of Piranha grooming procedures;

• We use Soft Drop with βSD = 2 as a representative of traditional grooming proce-
dures.

For details regarding other Piranha grooming procedures and Soft Drop with different
βSD, see appendix B.

4.1 Samples and observables

In the studies of this section, we use Pythia 8.244 [105] with the default 4C tune [140],
and work with samples of QCD quark and gluon jets without multiple parton interactions.
We consider jets with transverse momentum pT > 500 GeV, maximum pseudorapidity
|η| < 4, and clustered with the anti-kT algorithm [124] with R = 1; we then re-cluster us-
ing the Cambridge-Aachen algorithm [125]. Our analyses focus on Soft Drop with βSD = 2
as a representative for traditional grooming procedures and on Balanced Recursive Sub-
traction (P-RSFf=1/2) as a representative for Piranha grooming; the Balanced Recursive
Subtraction algorithm is available on GitHub [113].

We study the responses of groomed jets to soft distortion through three qualitatively
different lenses:

• Energy Flow: EMD.
To understand the overall response of groomed jet energy flow to soft radiation, we
use the EMD of section 2.1. The EMD between two jets bounds the difference of

17To mitigate the discontinuities of tree-based clustering, one can introduce a continuous weighting pro-
cedure for clustering histories. One way to assign continuous weights to different clustering histories is the
Q-jet scheme [138, 139], which notably leads to reduced statistical fluctuations in observable distributions
compared to the standard scheme of using a single clustering history for jet substructure calculations. While
the Q-jet scheme has not been applied directly to grooming in the context of energy flows, to our knowl-
edge, it provides a particularly simple way to overcome the clustering discontinuities we discuss here: we
may simply define an overall groomed energy flow — devoid of clustering discontinuities — as the weighted
average of the groomed energy flows associated with each possible clustering history.
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a large class of IRC-safe observables between the jets and provides an observable-
independent tool to study the robustness of different grooming procedures to the
presence of soft contamination.18

• Extensive Properties: pT .
To understand how the extensive properties of groomed jets are modified by soft
contamination, we examine the responses of the transverse momentum of groomed
jets. We are concerned in particular with the amount by which transverse momen-
tum in the presence of contamination, p̃T , is shifted relative to the associated un-
contaminated value, pT :

∆pT = p̃T − pT . (4.1)

pT indicates transverse momentum in the absence of distortion or contamination and
p̃T captures the response of transverse momentum to different sources of low-energy
physics. This is specified more precisely in each of the subsequent sections.

• Substructure: C
(ς)
1 .

We use jet substructure to capture the response of the intensive properties of jets
to contaminating radiation. In particular, we study the response of the two-prong
energy correlation functions (ECFs) of ref. [39]:

C
(ς)
1 = 1

2

∑M
i=1

∑M
j=1 pT, i pT, j (Rij/R0)ς

p2
T, tot.

. (4.2)

pT, i represents the fraction of the jet transverse momentum carried by particle i, Rij

indicates the rapidity-azimuth distance between particles i and j, and the sum is over
all particles in the jet. In the limit of jets that are central (y = 0) and narrow (have
jet radius R0 ≪ 1), we can write the ECFs in the approximate form of eq. (3.2).
As a concrete example of the response of substructure to soft radiation, we focus
on ∆C

(2)
1 = C̃

(2)
1 − C

(2)
1 ≈ ∆

(
m2/p2

T

)
, where a tilde again indicates the associated

observable in the presence of a particular source of low-energy physics, while the
absence of a tilde indicates the absence of low-energy effects.

We emphasize that in all of our phenomenological studies (except our studies of the un-
derlying event in section 5.2 and 5.3), we examine how each source of contamination leads
to changes on a “per-jet” level, rather than at the level of distributions of observables. In
particular, we examine the EMD between each jet before and after contamination, and the
changes in pT and C

(2)
1 induced by contamination for individual jets. To the best of our

knowledge, the effects of hadronization on a per-jet basis have not been studied in this way
before, as the sensitivity of groomed jets to hadronization is often studied instead at a sta-
tistical level by studying the distributions of groomed jet observables. Therefore, the results
we present offer a more detailed examination of the effects of the hadronization model of

18In particular, the EMD of section 2.1 tends to reflect the response of extensive properties of jets, as
we see concretely in our examples; a less concrete way to see this is by directly looking at eq. (2.1), and
noticing that the EMD has units of energy.
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Pythia 8.244; however, these results may not be precisely reflected solely by the statistical
changes in distributions of groomed jet observables that are induced by hadronization.

4.2 Hadronization

We first provide phenomenological evidence that continuous grooming is less sensitive than
hard-cutoff grooming to the physics of hadronization. A deep understanding of the physics
of traditional jets requires careful consideration of hadronization corrections, such as in
jet masses [96, 112, 134] and hadronic event shapes [111, 141]. Hard-cutoff groomed jet
observables in particular can undergo large corrections from the hadronization process due
to the discontinuity of the hard-cutoff paradigm: hadronization can transform partons
with energy below a hard cutoff into hadrons with energy above the hard cutoff, and vice
versa. These subtleties lead to additional complications in the theoretical calculation of
non-perturbative effects on traditionally groomed jet observables [96].

In figure 7, we compare how ungroomed jets, traditionally groomed jets, and Piranha-
groomed jets respond to hadronization in the context of energy flow, extensive properties,
and substructure. Our studies focus on the parton-hadron EMD (the EMD between parton-
level jets and their hadron-level counterparts), the parton-hadron ∆pT , and the parton-
hadron ∆C

(2)
1 . Piranha-groomed jets typically exhibit smaller and more predictable re-

sponses to hadronization, evinced by the reduced variance in their hadronization response.
One key factor in the improved responses of Piranha-groomed jets is the scaling-down
of distortions due to hadronization in Piranha-groomed jets: the subtractive approach of
Piranha (and in particular P-RSF when fsoft ̸= 0, 1) removes energy from every particle in
the event, resulting in a controlled and uniform hadronization response. On the other hand,
Soft Drop grooming does not implement continuous, event-wide subtraction. Jets groomed
with Soft Drop either retain or remove particles as a result of distortions due to hadroniza-
tion, resulting in a larger variance in the properties of jets groomed with Soft Drop.

We plot distributions of the parton-hadron EMD for groomed QCD jets for the bench-
mark value of zcut = 0.1 in figure 7a. We see a sharper peak at a smaller EMD in the
parton-hadron EMD distributions for P-RSFf=1/2 and longer tails for Soft Drop, already
indicating that hadronization is more likely to dramatically change the result of Soft Drop.
Figures 7b and 7c show that the average parton-hadron EMD and the variance in the
parton-hadron EMD are both smaller for P-RSFf=1/2 groomed jets than for Soft Drop
groomed jets for a wide range of zcut values, again evincing that Piranha-groomed jets
have less sensitive responses to hadronization.

The extensive observable pT and the substructure observable C
(2)
1 also reflect the

increased robustness of Piranha-groomed jets to hadronization. In our discussion of
hadronization, we characterize the response of pT by using eq. (4.1) with pT = p

(parton)
T

indicating the parton-level transverse momentum, before the addition of model-dependent
hadronization effects, and p̃T = p

(hadron)
T . In figure 7d, we see that for zcut = 0.1, Piranha-

groomed pT again tends to have a sharper response to hadronization, while figures 7e and 7f
indicates that this sharper response holds for a wide range of zcut values. The behavior
of the pT closely mimics that of the parton-hadron EMD, evincing our arguments that
the parton-hadron EMD provides a probe of generic jet observables to hadronization. In
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Figure 7. Per-jet hadronization responses of (top row) EMD, (middle row) ∆pT , and (bottom row)
∆C

(2)
1 using Balanced Recursive Subtraction (P-RSFf=1/2, orange) and Soft Drop with βSD = 2

(SDβ=2, blue). We display (left column) the distribution of the response for zcut=0.1, (middle
column) the mean response as a function of zcut, and (right column) the standard deviation of
the response as a function of zcut. The red arrows indicate the direction corresponding to better
performance.
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figures 7g, 7h and 7i, we make similar conclusions for C
(2)
1 ≈ m2/p2

T . We first note that
the parton-hadron shift in the C

(2)
1 substructure observable is larger for P-RSFf=1/2, at

least for fixed zcut, and the substructure of P-RSFf=1/2 groomed jets may undergo larger
changes due to hadronization than that of Soft Drop groomed jets. However, the vari-
ance in the shift in P-RSFf=1/2 groomed substructure is smaller than that of Soft Drop,
indicating that the response of Piranha-groomed substructure to hadronization is more
predictable than that of Soft Drop.

Overall, we find that Piranha-groomed jets have more predictable responses to
hadronization than traditionally groomed jets, supported by the observable independent
EMD, as well as by extensive observables and jet substructure. We have provided evidence
that IRC-safe observables of jets groomed with Soft Drop have generically larger responses
to hadronization, while Piranha-groomed observables are generally less affected by the
physics of hadronization. We hope that the stability of Piranha-groomed jets to the non-
perturbative physics of hadronization may facilitate even further communication between
theoretical predictions and experimental results for groomed jet observables.

4.3 All versus charged

We next compare the response of hard-cutoff and Piranha grooming to the exclusion of
neutral particles, as a rough analog of the smearing of neutral particles due to detector
effects. Small tweaks in experimental signatures due to detector effects may produce large
changes in hard-cutoff groomed observables, providing another obstacle in extracting fun-
damental physics from traditionally groomed jets. The continuity of Piranha again leads
us to expect that Piranha-groomed observables are more robust to detector effects than
traditionally groomed jet observables.

To counteract the leading bias due to the loss of neutral energy in the jet, we apply a
rescaling to the pT of the charged-only jet constituents:

p̃i
T =


0, particle i is neutral

pi
T

〈
p

(all)
T

〉
〈

p
(charged)
T

〉 , particle i is charged
, (4.3)

where pi
T is the transverse momentum of particle i in the original jet, J , containing both

charged and neutral particles, and p̃i
T is the transverse momentum we assign to particle

i in the charged-only, rescaled jet, J̃ , with neutral particles excluded. Here, p
(all)
T =∑

i pi
T is the total transverse momentum including both charged and neutral particles,

while p
(charged)
T =

∑
i charged pi

T includes only charged constituents. The rescaling factor〈
p

(all)
T

〉
/
〈
p

(charged)
T

〉
≈1.47 is defined such that the average pT is preserved after removing

neutral particles.19

19We can gain intuition for this rescaling factor by considering the isospin-preserving limit, where we
expect similar numbers of π+, π−, and π0 mesons to be produced. Events for which we discard the π0

particles should have roughly 2/3 the total transverse momentum, ignoring subtleties associated with kaons
and other heavier states. This leads to an estimate of

〈
p

(all)
T

〉
/
〈
p

(charged)
T

〉
≈ 3/2 — remarkably close to the

numerical value of 1.47 found in Pythia 8.244.
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Figure 8. Same as figure 7, but for per-jet responses to the exclusion of neutral particles. We
rescale the pT of the charged particles in order to eliminate the leading pT bias due to the loss of
neutral energy.
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In our discussion of EMD, we compute the response EMD
(
G(J ), G(J̃ )

)
, where G

indicates the grooming algorithm under consideration; we call this the all-charged EMD.
Similarly, in our discussion of eq. (4.1), we take pT = p

(all)
T to be the transverse momentum

including both charged and neutral particles and p̃T =
∑

i p̃i
T = p

(charged, rescaled)
T to be

the rescaled contribution from charged particles only. We refer to the difference as the all-
charged pT shift, or the all-charged ∆pT . Note that the rescaling procedure does not impact
dimensionless charged-only substructure observables like C

(2)
1 , since they are normalized

by the jet momentum.
Our comparison of the all-charged response of Piranha grooming to that of traditional

grooming procedures is shown in figure 8. As in our study of hadronization, we begin our
study with a discussion of the EMD. The all-charged EMD bounds changes in IRC-safe
observables due to the exclusion of neutral particles and corresponding rescaling of charged
particles. Since neutral particles are the most susceptible to smearing effects due to detector
responses, the all-charged EMD furnishes an observable-independent probe for the effects
of experimental detectors on groomed jets. We demonstrate distributions of the all-charged
EMD for groomed QCD jets with several choices of grooming in figure 8a. The contrast
between Piranha and traditionally groomed all-charged EMD is not as sharp as for the
parton-hadron EMD. However, Piranha grooming again enjoys smaller and more sharply
peaked EMD responses to the exclusion of neutral particles. Figure 8b shows that the
all-charged EMD is smaller for P-RSF1/2 groomed jets than for Soft Drop groomed jets for
a wide range of zcut values. Figure 8c shows that the fluctuations in the all-charged EMD,
and therefore the fluctuations in the response of grooming to our naive model of smearing,
are noticeably smaller for Piranha groomers than for traditional groomers.

Our results for the all-charged pT shifts are similar to our results for the all-charged
EMD. Figure 8d demonstrates that the pT response of P-RSFf=1/2 is smaller and more
sharply peaked for zcut = 0.1, while figures 8e and 8f respectively show that the P-RSFf=1/2
all-charged response remains small and sharply peaked for a wide range of zcut values. In-
deed, the fluctuations of the all-charged pT response are nearly identical for each Piranha
groomer.

Figures 8g, 8h and 8i compare the robustness of P-RSFf=1/2 and Soft Drop for the
substructure observable C

(2)
1 . Figure 8g again shows that the all-charged response of P-

RSFf=1/2 is more sharply peaked than that of Soft Drop. Similarly, figures 8h and 8i
demonstrate that the all-charged shifts to Piranha-groomed jet substructure are generally
larger but more predictable than those of Soft Drop for a wide range of zcut values. The
increased robustness of Piranha grooming procedures compared to Soft Drop is less sharp
than in the case of hadronization, but the Piranha-groomed observables nonetheless have
less spread and a stronger linear correlation in response to our naive model of smearing.

5 Responses of grooming to additive contamination

We examine the ability of Piranha grooming to mitigate the effects of additive contam-
ination from pileup (PU) and the underlying event (UE), which both consist of extra soft
radiation that sits on top of a hard process.
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• We use P-RSFf=1/2 as a representative of Piranha grooming procedures;

• We use SDβ=2 as a representative of traditional grooming procedures;

• In our PU studies, we use Constituent Subtraction (CS), a constituent-level area
subtraction method for pileup mitigation [118], as a representative of PU mitigation
procedures.

The case of additive contamination is qualitatively different than that of soft distortions;
we do not want to examine the robustness of the grooming procedure to additive contam-
ination, but rather the ability of the grooming to remove the contamination. In our PU
mitigation studies, we find that P-RSFf=1/2 — which behaves comparably to CS — is a
more effective tool than SDβ=2. In our UE studies, we find that P-RSFf=1/2 and SDβ=2
are comparable tools for the subtraction of UE effects from jet substructure.

We simulate PU using the dijet and minimum bias samples from ref. [103], produced
using Pythia 8.185 with tune 4C for proton-proton collisions at

√
s = 14 TeV. We layer

minimum bias events on top of the hard dijet events, taking the number of pileup events
to be Poisson distributed with a mean of ⟨nPU⟩ = 50 events.

We simulate UE by turning on multiple parton interactions in Pythia 8.244 [105]
with the default 4C tune [140]. We begin with a study of QCD jets and, to roughly echo
similar studies in the original Soft Drop paper [3], also explore the groomed mass resolution
of jets produced by boosted W bosons and top quarks in the presence of UE.

5.1 Minimum bias events and pileup

We first examine the effectiveness of different groomers in mitigating the effects of PU on the
dijet events of ref. [103]. To quantify the ability of different groomers to remove PU, we per-
form an event-by-event comparison of hard events to the associated PU-subtracted events:

• A hard event is a dijet event without any PU, representing the physics of a hard
process;

• A PU-subtracted event is produced by simulating the additive contamination due
to PU on top of a hard event and then attempting to groom the PU away.

To produce a PU-subtracted event, we first simulate PU by adding the energy distributions
of a Poisson-distributed number of minimum bias events to the energy distribution of a
given hard event. We then estimate the contaminating energy density due to PU using
the GridMedianBackgroundEstimator (GMBE) method of FastJet [117]. We tune an
additional correction factor that scales our estimate ρest. relative to the GMBE value
ρGMBE for each grooming algorithm to subtract pileup more effectively, as discussed in
more detail in appendix B. Finally, we produce the PU-subtracted event by removing a
fraction zcut of the jet pT consistent with the estimated pileup density:

zcut p
(jet)
T = ρest. Ajet ≈ p

(PU in jet)
T . (5.1)
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Figure 9. Properties of per-jet PU-subtracted (top row) EMD, (middle row) ∆pT , and (bottom
row) ∆C

(2)
1 , discussed in section 5.1 for Balanced Recursive Subtraction (P-RSFf=1/2, orange), Soft

Drop with βSD = 2 (SDβ=2, blue), and Constituent Area Subtraction (CS, green). We display (left
column) the distribution of the each PU-subtracted observable for ⟨nPU⟩ = 50, (middle column) the
mean PU-induced shift in each observable as a function of ⟨nPU⟩, and (right column) the standard
deviation of the PU-induced shifts in each observable as a function of ⟨nPU⟩. The red arrows
indicate the direction corresponding to better performance.
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We examine the EMD, ∆pT , and ∆C
(2)
1 between the leading jets of the hard and

pileup-events in figure 9.20 In figures 9a, 9b and 9c, we examine the EMD between the
leading jet in the hard dijet event and the leading jet in the subtracted event with pileup.
Figure 9a demonstrates that when ⟨nPU⟩ = 50, P-RSFf=1/2 tends to subtract pileup more
accurately and predictably, evinced by a more sharply peaked EMD distribution and a
smaller average PU-subtracted EMD than found for CS and Soft Drop. This strength of
P-RSFf=1/2 persists as the amount of pileup is increased, as suggested by figures 9b and 9c.

Figures 9d, 9e and 9f offer similar conclusions for the jet pT . In our study of pileup
responses, pT = p

(hard)
T indicates the transverse momentum of the hard event, before the

layering of minimum bias/pileup events, and p̃T = p
(groomed PU)
T indicates the transverse

momentum after pileup has been added and then groomed away. RSF1/2 again reproduces
the extensive quantity pT of the jet in the absence of PU for a wide range of ⟨nPU⟩ values.
Identical conclusions hold for the substructure of the jet, as suggested by the behavior of
C

(2)
1 shown in figures 9g, 9h and 9i.

Figures 15 and 16 of appendix B evince further that with our tuned procedure for PU
mitigation, Piranha groomers and CS perform more reliably than traditional groomers in
the removal of pileup. Furthermore, P-RSF algorithms are tree-based and offer orders-of-
magnitude faster PU mitigation over CS, P-AS, and P-IVS (see figure 17 of appendix B).

5.2 Underlying event

We next examine the ability of grooming to eliminate additive contamination from UE.
Since we model UE by generating events in the presence of multiple parton interactions
in Pythia 8.244, it is less straightforward to study the effects of UE on an event-by-
event basis. We instead work at the level of distributions: we tune both P-RSFf=1/2 and
Soft Drop so that, when acting on events with UE, they most accurately reproduce the
substructure distribution of events without UE. We focus on substructure alone in our
discussion of UE correction because we cut on jets with pT > 500 GeV both for events
with and without UE, and it is less meaningful to focus on the associated pT distributions;
we leave a more detailed study of the ability of Piranha groomers to remove UE at an
event-by-event level for future work.

We characterize the ability of groomers to correct for the presence of UE by comparing
base distributions to UE-corrected distributions:

• A base distribution is a substructure distribution with a fixed grooming parameter,
z

(base)
cut ;

• A UE-corrected distribution is a substructure distribution in the presence of UE
and with slightly more grooming tuned to soak up the additional energy contribution
from UE: z

(corr.)
cut = z

(base)
cut + δzcut.

20In some situations, the pileup contributes enough energy that the leading jet after the addition of pileup
corresponds to the direction of the sub-leading jet before the addition of pileup. This phenomenon occurs
only for a small fraction of events, and we do not include these events in the following discussion.
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We tune δzcut by hand, for every z
(base)
cut , to optimally correct for the presence of UE21

by minimizing the Wasserstein distance between the two distributions. The Wasserstein
distance is a metric on the space of distribution, much in the same way that the EMD is a
metric on the space of energy flows, and provides a useful and quantitative measure of the
ability of the grooming to correct for UE.

Figure 10 compares base distributions to UE-corrected distributions for P-RSFf=1/2
and Soft Drop. Figures 10a and 10c examine the ability of the groomers to reproduce
ungroomed base distributions, with z

(base)
cut = 0. Figures 10b and 10d examine instead

groomed base distributions with z
(base)
cut = 0.025.

Figures 11a and 11b quantify the effectiveness and robustness of P-RSFf=1/2 and
Soft Drop as a function of z

(base)
cut by studying the un-corrected Wasserstein distance and

the UE-corrected Wasserstein distance, respectively. Figure 11b shows the UE-corrected
Wasserstein distance as a function of zcut, and suggests that P-RSFf=1/2 is better at
correcting for UE when z

(base)
cut ≲ .05, and that SDβ=0 and P-RSFf=1/2 have similar UE

correction ability for values of z
(base)
cut between 0.05 and .1.

We note that we expect hard-cutoff groomers to be generically more robust to the
presence of UE because even at fixed zcut, they can remove an arbitrary amount of energy
due to soft, wide-angle radiation in an event. We correspondingly expect that hard-cutoff
groomers require less additional grooming to remove the effects of UE. Piranha groomers,
on the other hand, cannot remove arbitrary amounts of energy from an event; we expect
that we must always slightly increase the strength of Piranha grooming to soak up additive
contamination from UE. We demonstrate that hard-cutoff groomers indeed require less
additional δzcut for optimal UE correction in figure 18 of appendix B.3.

We also point out that Recursive Subtraction techniques that are more geared towards
the removal of the soft and wide-angle radiation which is characteristic of UE may perform
even better in UE correction. In hard-cutoff grooming, for example, Soft Drop with βSD > 0
preferentially grooms wide-angle radiation, Soft Drop with positive βSD is particularly well
suited to remove UE (see, for example, figure 18 of appendix B.3). Perhaps P-RS grooming
procedures that upgrade the parameter fsoft of P-RSF into a function of the soft energy
fraction z and the splitting angle θ of a branch (such as Hard-Balanced P-RSF, as in
section 3.4) may be more suited to the removal of soft wide-angle radiation from UE.

We have argued that P-RSFf=1/2 and SDβ=2 are comparable tools for the subtraction
of UE effects in jet substructure, though P-RSFf=1/2 requires more tuning to achieve the
same level of UE correction. We emphasize that further investigation of such P-RS algo-
rithms might improve the ability of Piranha in the tagging of boosted objects and beyond.

21We note that the optimized δzcut is energy-dependent and process-dependent. For example, we expect
that δzcut should be parametrically smaller for processes at higher energies since the energy removed from a
jet scales as Qzcut, where Q is the energy scale of the hard process, while the energy scales associated with
UE are only weakly correlated with the energy of the hard process (see, for example, figure 3 of ref. [142]
or section 7.2 of ref. [143]).
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Figure 10. The response of groomed substructure distributions of QCD jets to the underlying
event (UE), using P-RSFf=1/2 (top row) and Soft Drop with βSD = 2 (bottom row). We examine
the robustness of groomed substructure to the presence of UE by comparing “Base” substructure
distributions with and without UE for fixed zcut = z

(base)
cut . We also examine the possibility of

adding additional grooming to remove the effects of UE, picking a z
(corr.)
cut that removes UE to most

accurately reproduce substructure distributions using zcut = z
(base)
cut in the absence of UE. The

left column shows the substructure distributions for z
(base)
cut = 0, while the right column shows the

substructure distributions for z
(base)
cut = 0.025.
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Figure 11. The behavior of the Wasserstein distance, in arbitrary units, between the C
(2)
1 dis-

tribution: (a) before UE correction, and (b) after UE correction, for SDβ=2 and P-RSFf=1/2 as a
function of the base amount of grooming z

(base)
cut . In (b), a lower UE-corrected Wasserstein distance

quantitatively indicates better correction against the effects of UE: the substructure distribution of
UE-corrected jets more closely resembles the substructure distribution of jets without UE.

5.3 Case study: mass resolution for W and top jets

As a final case study, we explore the use of Piranha grooming strategies in the tagging
of boosted objects, another useful application of traditional grooming strategies such as
Soft Drop. We must once again overcome the subtlety that Piranha grooming strategies
remove energy proportional to the grooming parameter (such as zcut in Recursive Safe
Subtraction). To successfully tag boosted objects decaying into jets, we must tune the
grooming parameter for Piranha strategies more than we would for Soft Drop. Nonethe-
less, we examine the mass resolution of Piranha-groomed jets from the decays of boosted
W bosons and top quarks and discover that Piranha may offer some advantages that
are complementary to those of traditional grooming strategies. The tagging procedure we
implement in the following discussion is quite simple, however, and the applications of
Piranha in boosted object tagging should be subjected to a more complete analysis.

In figure 12, we assess the behavior of Piranha in tagging boosted objects. We
focus on jets of pT ≥ 500 GeV produced from the decays of W bosons and top quarks in
figures 12a and 12c, respectively. We then plot the associated background rejection as a
function of signal efficiency in figures 12b and 12d.

To produce the groomed mass distributions of figures 12a and 12c, we groom jets in the
presence of UE. Afterward, we rescale the mass of the jet to correct for the shift of the mass
peak due to the removal of energy from the jet during grooming. This rescaling procedure
is necessary to reproduce the correct mass peak for P-RSFf=1/2; however, rescaling Soft
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Figure 12. A comparison of traditional and Piranha grooming procedures in the tagging of (top
row) boosted W bosons and (bottom row) top quarks. The data in the plots correspond to 100,000
jet events with pT > 500 GeV in Pythia 8.244. The left column displays the mass distributions
of W and top jets with and without UE, and with UE groomed away using either Soft Drop with
βSD = 2 or P-RSFf=1/2 with additional post-processing discussed in the text. The right column
displays the relationship between background rejection and signal efficiency associated with W

and top tagging, respectively, produced by considering symmetric windows around the mass of the
relevant boosted object and comparing with a QCD background.
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Drop groomed mass distributions has a minimal effect since Soft Drop tends to remove
wide-angle soft radiation without severely affecting radiation from the hard event.

Figures 12a and 12c show rescaled mass distributions for each grooming algorithm for
the value of zcut that most precisely removes UE, in the sense that it most closely reproduces
the mass distribution of jets without UE. We find that the best performance is achieved
by z

(P-RSF1/2)
cut = 0.034 and z

(SD2)
cut = 0.025 when grooming W jets, and z

(P-RSF1/2)
cut = 0.023

and z
(SD2)
cut = 0.035 when grooming top jets. In each case, Soft Drop does not require

any additional rescaling, while we find the best performance if we rescale the energy of
P-RSFf=1/2 groomed jet constituents by about +4%.

In this simple context, P-RSFf=1/2 offers slightly better background rejection for rea-
sonable signal efficiencies. We evince this in figures 12b and 12d, where we show the signal
efficiency versus background rejection curves associated with comparing signal W or top
jets to QCD background, again with pT ≥ 500 GeV. Our tagging procedure is minimal: we
accept events within a symmetric window of width δm around the mass of the W boson
or top quark, respectively, and figures 12b and 12d are produced by varying the window
size δm. For reasonable values of signal efficiency, between around 60% and 90%, the
P-RSFf=1/2 algorithm gives greater background rejection than Soft Drop.

Again, the results in figures 12a and 12c and figures 12b and 12d suggest that P-
RSFf=1/2 and SDβ=2 behave comparably as tools to remove the effects of UE in jet mass
distributions, and to tag underlying boosted object. These results are preliminary, and to
state these conclusions with more confidence will require more detailed tagging procedures
than the simple algorithm described above. We leave a more detailed study of the tagging
potential of P-RSFf=1/2 and Piranha to future work.

6 Discussion and conclusions

In this work, we proposed the paradigm of Pileup and Infrared Radiation Annihilation
(Piranha) for continuous jet grooming. Motivated by optimal transport theory and the
Energy Mover’s Distance (EMD) of ref. [95], we re-framed the Apollonius Subtraction
(P-AS) and Iterated Voronoi Subtraction (P-IVS) procedures of ref. [102] as implementa-
tions of the Piranha paradigm. We additionally introduced Recursive Subtraction with a
Fraction (P-RSF) as a family of new groomers motivated by the Piranha paradigm. We
showed that a particular Recursive Subtractor, P-RSFf=1/2, overcomes the soft disconti-
nuities of traditional hard-cutoff grooming procedures, and that general P-RSF algorithms
only have soft discontinuities in suppressed regions of phase space. We highlighted the
unprecedented robustness of P-RSFf=1/2 to hadronization, detector effects, and pileup.
We showed also that P-RSFf=1/2 may be able to correct for the presence of the underlying
event. Though hard-cutoff groomers may be more robust against effects from UE without
additional tuning, Piranha groomers can be tuned to remove additive contamination from
the underlying event. We used the example of additive contamination from UE to argue
that Piranha may also have applications in the tagging of boosted objects.

There are several immediately evident avenues for future phenomenological and the-
oretical exploration. While we argued that P-RSF had more robust responses to soft

– 40 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
7

distortions, it will be interesting to quantify this including theoretical, model-dependent
uncertainties. For example, it will be interesting to study the robustness of P-RSFf=1/2 to
hadronization when using different models of color recombination, with different Pythia
tunes, and from the perspective of effective field theory as in ref. [96]. Similarly, the ef-
fects of experimental detectors on P-RSFf=1/2 groomed quantities must be explored with
more realistic models of detector responses and compared in more detail with traditional
grooming techniques. More detailed studies of these model-dependent uncertainties may
facilitate a more precise, and even process-dependent method to tune the parameters of
Piranha groomers such as P-RSF to the removal of PU and UE in more realistic scenarios.

Designing and studying variants of P-RSF in which the amount of grooming for a
particular emission depends on the angle of the emission, as in Soft Drop with βSD ̸= 0,
and even the energy fraction, may be another easy way to improve the robustness and
precision of P-RS algorithms in removing specific models of soft contamination. Indeed,
any method that varies fsoft, zcut, ρ, or other parameters of the jet grooming procedure in
a way that depends on more detailed information within the jet could be useful in more
precise removal of contaminating radiation, such as the removal of PU, UE, or the thermal
noise that contaminates jets originating in heavy ion collisions.

A first-principles calculation of Recursive Subtraction groomed jet observables will rely
on analytic exploration of the elaborately correlated emissions of P-RS groomed jets, as well
as contributions from non-global configurations. We begin this journey in appendix C, but
further exploration may depend on a more precise application of existing tools for jet sub-
structure or even on newer tools in perturbative QCD, such as the techniques of ref. [144].

The study of EMD-mode Piranha grooming, introduced in appendix A, is another
interesting avenue for the development of continuous grooming techniques. Unlike the
Piranha groomers explored in the main text, EMD-mode Piranha groomers have the
potential to remove an arbitrary amount of pT from an event. We look forward to future
studies of EMD-mode grooming for its potential to address stochastic fluctuations in the
levels of jet contamination.

Finally, the use of alternative methods for optimal transport, such as the EMD without
the restriction of β = 1 that we chose in this work, or the flexible and computationally
efficient formalism of linearized optimal transport [119–122], may offer new tools and ad-
ditional insights into continuous grooming.

The Piranha grooming strategy has intricate geometric origins, but its goal is simple:
the optimal and continuous removal of contaminating low-energy radiation. We hope that
the simple strategies and examples of continuous grooming discussed in this work may
provide and inspire new tools for clear communication between experimental results and
theoretical predictions regarding our microscopic universe.
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A Grooming in EMD mode

In this appendix, we describe another route for developing Piranha groomers: EMD
mode. EMD-mode grooming produces a groomed event with a fixed EMD relative to its
ungroomed counterpart, and furnishes a complementary approach to “pT -mode” groomers.
We provide a conceptual introduction to EMD-mode grooming below, leaving an explo-
ration of the phenomenological implications of EMD mode to future work.

The Piranha groomers described above all subtract a fixed amount of transverse mo-
mentum from the energy flow of an event. Let us call them pT -mode groomers. pT -mode
grooming gives us a great deal of control over the amount of energy we remove from an
event. When using Piranha groomers in pT mode to remove additive contamination,
however, this precise control over ∆pT leads to additional complications; since additive
contamination may add arbitrary amounts of contaminating soft radiation to an event,
removing a fixed amount of pT from the contaminated event may not be the best strategy
for reproducing the un-contaminated event. These complications lead to important con-
siderations when using Piranha for pileup mitigation, as in section 5.1 and appendix B.2,
and they are especially disadvantageous when using Piranha to correct for the presence
of the underlying event, as in section 5.2 and appendix B.3.

Grooming in EMD mode is a complementary approach that allows Piranha groomers
to remove arbitrary amounts of soft radiation from an event. Piranha in EMD mode
therefore furnishes a conceptually interesting alternative for continuous grooming.

First, let us briefly review how the pT -mode algorithms we have presented for P-AS,
P-IVS, and P-RS all subtract a fixed amount of transverse momentum, ∆pT = ρAtot, or
∆pT = zcutpT , from the event under consideration.

• P-AS subtracts the pre-specified pT all at once by finding the Apollonius regions
associated with the event, as in section 2.3.

• P-IVS subtracts the pre-specified pT by subtracting pT from each particle in the event
until it removes a particle, and then continues recursively until the specified pT has
been removed, as in section 2.4.

• P-RS subtracts the pre-specified pT by recursively assigning fractions of the total pT

to be removed to each branch of the jet tree until it reaches the final-state particles
of the jet, as in section 2.5.
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The approach for EMD-mode grooming is quite similar. In EMD mode, however, each
algorithm continues until a specific amount of EMD has been subtracted from the event,
often in an iterative procedure. As a concrete example, let us construct the algorithm for
P-IVS in EMD mode, or P-IVS(EMD):

1. P-IVS(EMD) finds the Voronoi diagram for the event, as discussed in section 2.4, and
indexes the steps of the algorithm by n, starting at n = 1. We define the energy flow
of the algorithm after step n is completed by En, where E0 is the energy flow of the
original event. We also define the EMD between En−1 and En as EMDn.

2. P-IVS(EMD) attempts to modify the pT of every particle in the event in the same way
as P-IVS in pT -mode:

p
(n)
T i = p

(n−1)
T i − ρ(n)A

(n−1)
i , (A.1)

where the p
(n−1)
T i and A(n−1) are the transverse momenta/Voronoi areas after step

n − 1, and
ρ(n) = min

i
p

(n)
T i /A

(n)
i , (A.2)

in analogy with eq. (2.8). As in section 2.4, ρ(n) describes the maximum pT that may
be subtracted from an event before one of the particles in the event is groomed away
entirely.

3. P-IVS(EMD) next calculates EMDn for this proposed groomed event, and asks whether
it has subtracted a total EMD of EMDcut from the event. If

∑n
k=1 EMDn < EMDcut,

P-IVS(EMD) has not yet subtracted the full EMDcut from the event. In this case, we
have more grooming to do: P-IVS(EMD) continues recursively, going back to the first
step of the algorithm.

4. If
∑n

k=1 EMDk > EMDcut, P-IVS(EMD) has subtracted too much EMD from the
event. In this case, P-IVS(EMD) revises its proposed groomed event at this step in
the algorithm by evaluating the value of ρ(n) that would give

∑n
k=1 EMDk > EMDcut,

and finding the associated groomed event by using eq. (A.1). It returns the resulting
event as the final groomed event.

As in P-IVS, P-IVS(EMD) does not need to re-compute the Voronoi diagram from scratch
at each step of the algorithm. Similarly, our procedure for finding the value of ρ(n) that
subtracts the correct amount of total EMD in the final step of the algorithm is computa-
tionally efficient, and does not rely on a complete re-evaluation of the EMD at each step
of the algorithm.

At present, we do not have an implementation of P-RS in EMD mode. That said,
we expect that the generalization of EMD-mode grooming to P-RS and P-RSF will be
similar: at step n of the EMD mode algorithm, we perform grooming with the maximum
value of zcut until a particle would be removed, and define EMDn as the EMD between
the energy flows at steps n − 1 and n of the grooming. If the sum of the subtracted
EMDs is greater than EMDcut,

∑n
k=1 EMDk > EMDcut, we must compute the value of

zcut that fixes EMDn > EMDcut −
∑n−1

k=1 EMDk, groom with this value of zcut, and return
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the resulting groomed event. Otherwise, if
∑n

k=1 EMDk < EMDcut, we would continue
grooming recursively.

We hope that future exploration of EMD-mode grooming may offer additional utility
in the use of continuous grooming in the subtraction of additive contamination, and in the
mitigation of obfuscating radiation in general.

B Feeding frenzy: comparing a plethora of grooming options

In this appendix, we present a brief collection of additional results regarding the responses
of Piranha and Soft Drop groomers to soft distortions and additive contamination. We
extend the results in the main text by comparing P-RSFf=1/2, the focus of our phenomeno-
logical studies in the main text, to three groups of grooming algorithms:

• Hard-Cutoff Groomers: SDβ=0, SDβ=1, and SDβ=2;

• Fully Continuous Groomers: P-AS and P-IVS;

• Recursive Subtractors: P-RSFf=0, P-RSFf=1/2, P-RSFf=3/4, and P-RSFf=1.

In our pileup studies, we also count Constituent Subtraction (CS) [118] among the contin-
uous groomers due to its continuity properties in the continuum limit. The comparisons
of this appendix demonstrate that the conclusions we drew in the main text by compar-
ing P-RSFf=1/2 to SDβ=2 seem to hold in greater generality: Piranha groomers tend to
have more robust responses to soft distortions and additive contamination than traditional
grooming methods. Furthermore, the responses of P-RSFf=1/2 are similar to the responses
of the fully continuous groomers P-AS and P-IVS (and CS, in the case of pileup mitigation);
each of the Piranha algorithms we explore in this appendix are available on GitHub [113].

As in the main text, we first extend our results involving hadronization corrections
(section 4.2) and all-charged corrections (section 4.3) to explore how several choices of
grooming and grooming parameters may respond to soft distortions. We then begin our
discussion of additive contamination by providing more detail regarding our pileup studies:
we explain in greater detail our procedure for pileup mitigation used in section 5.1 and
extend our results to several groomers and values of ⟨nPU⟩. Finally, we similarly explore
how different groomers respond to the underlying event, extending the results of section 5.2.

B.1 Soft distortions

In the main text, we made the argument that continuity provides more predictable re-
sponses to soft distortions; we therefore focus on the fluctuations induced by soft distortions
by studying the standard deviations of the groomed EMD and C

(2)
1 as a function of zcut.

Figure 13 shows the fluctuations in the parton-hadron groomed EMD and the parton-
hadron ∆C

(2)
1 , as discussed in section 4.2, for a variety of grooming options. The first

column of figure 13 demonstrates that P-RSFf=1/2 groomed jets tend to have significantly
smaller fluctuations due to hadronization, echoing the conclusions of section 4.2. We note
that SDβ=2 is significantly more robust to hadronization than SDβ=0 when considering
extensive observables (EMD and pT ). The second two columns of figure 13 show that the
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Figure 13. Per-jet hadronization responses of Piranha and traditional groomers for (top row)
EMD, (middle row) ∆pT , and (bottom row) C

(2)
1 ; we compare P-RSFf=1/2 to (left column) hard-

cutoff groomers, (middle column) fully continuous groomers, and (right column) recursive subtrac-
tors. For brevity in this appendix, we focus on the variance of the shifts in each observable due
to hadronization in groomed jets. The red arrows indicate the direction corresponding to better
performance.
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Figure 14. Same as figure 13, but for jet responses to the exclusion of neutral particles.

Piranha groomers we consider all have similar hadronization responses in the considered
range of zcut.

Figure 14 presents the all-charged groomed EMD and ∆C
(2)
1 as discussed in section 4.3.

The first column again shows that P-RSFf=1/2 experiences significantly smaller fluctuations
due to the exclusion of neutral particles than Soft Drop, and the second two columns show
similar responses for all Piranha groomers.
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B.2 Pileup

We now provide more detail regarding our PU mitigation procedure. As discussed in sec-
tion 5.1, we use the dijet and minimum bias events of ref. [103] to study the effects of
PU. We use the GridMedianBackgroundEstimator (GMBE) method of FastJet [117] to
provide a rough estimate, ρGMBE, of the energy density of additive contamination due to
pileup in each jet we would like to groom. However, since GMBE is designed to provide an
estimate of the contaminating energy in an entire event,22 we improve upon the GMBE pro-
cedure by optimizing a correction factor that scales the GMBE estimate for each groomer.
We optimize the correction factor for each groomer by considering its action on 100,000
events, throwing away events where the presence of PU changes which jet within the dijet
has more energy, and implementing the following procedure:

1. For each epoch i during our optimization, estimate the contaminating energy density
due to PU within a jet,

ρPU[E ] =
p

(PU in jet)
T

Ajet
, (B.1)

that needs to be applied by a groomer g to accurately remove PU contamination as

ρ
(epoch i)
est. [E ; g) = ρGMBE [E ]fi(g), (B.2)

where we use parentheses to indicate that ρest. and f are functions of the groomer
g, and square brackets to indicate that the energy densities ρ are functionals of the
energy flow E . Since we are using jets clustered using the anti-kt algorithm, we may
take the jet area to be πR2

jet [124].

2. Introduce a new epoch every 1,000 events we consider, by adjusting our proposed
correction factor fi to

fi+1 = fi + rlearn

〈∆ρ

ρ

〉
i

, (B.3)

where the angular brackets indicate an average over the jets considered during epoch i,
∆ρ indicates the difference in pT density in a pileup subtracted event and a hard event,

∆ρ = ∆pT

Ajet
= p

(groomed PU)
T − p

(hard)
T

Ajet
, (B.4)

and rlearn is a learning rate which we set to 1/3.

3. At the end of the final epoch, save the final correction factor flearned(g) for each
groomer.

4. Perform a new analysis of the ability of each groomer to remove PU by estimating
the optimal ρ required for PU-subtraction as

ρest.[E ; g) = ρGMBE [E ]flearned(g). (B.5)

We recall for completeness that zcut = ρest.Ajet/p
(jet)
T .

22Note that FastJet also supports Jet Median Background Estimation (JMBE), which is more suited to
the task of estimating the contaminating energy density in each jet. We were unable to find Python support
for JMBE and used the method detailed here as a replacement.
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Figure 15. Average per-jet pileup-induced shifts in (top row) EMD, (middle row) ∆pT , and
(bottom row) C

(2)
1 ; we compare P-RSFf=1/2 to (left column) hard-cutoff groomers, (middle column)

fully continuous groomers, and (right column) recursive subtractors, as discussed in section 5.1 and
appendix B. The red arrows indicate the direction corresponding to better performance.

In figures 15 and 16, we present results on PU mitigation using the optimization
procedure described above for a variety of groomers, as an extension of the discussion
in section 5.1. We focus on the PU-subtracted EMD, the PU-subtracted ∆pT , and the
PU-subtracted ∆C

(2)
1 as a function of the average number of PU events ⟨nPU⟩.
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Figure 16. Same as figure 15, but for the standard deviation of the pileup-induced shifts.

The Piranha groomers displayed in figure 15, together with CS, tend to perform
only slightly better than the traditional groomers, on average, in removing pileup; both
Piranha and traditional groomers have been tuned so that ⟨∆pT ⟩ = 0, and this tuning
is reflected by the relatively small changes to the extensive properties and even the sub-
structure of the PU-subtracted jets. The notable exception is P-RSFf=0. Since P-RSFf=0
preferentially grooms away hard radiation, it is poorly suited to grooming away the low-
energy additive contamination that is contributed by pileup, and it performs more poorly
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Figure 17. Runtimes for Piranha algorithms, and comparison to some traditional grooming and
pileup mitigation algorithms. (a) shows the probability density for the logarithm of the runtime
for each algorithm when ⟨nPU = 50⟩, where nPU is the average number of pileup events. (b) shows
the average runtime for each algorithm as a function of ⟨nPU⟩. Runtimes are shown for the Pythia
8.185 datasets of ref. [103], and we simulate pileup by layering a Poisson-distributed number of
minimum-bias events over a hard dijet event.

than other Piranha groomers in reproducing both extensive and substructure properties
of PU-subtracted jets.

However, figure 16 shows that Piranha groomers and CS are more reliable PU mitiga-
tors than traditional groomers: the standard deviations in the shifts of PU-subtracted ex-
tensive and substructure properties tend to be significantly smaller for Piranha groomers
than for traditional groomers. Again, P-RSFf=0 is a noticeable exception and is less reliable
as a PU mitigator than either Piranha or traditional grooming methods.

We also briefly present results for the runtimes of the grooming algorithms discussed
in this paper, including the Constituent Subtraction (CS) pileup mitigation algorithm,
as a function of the amount of additive contamination in events with PU. In particular,
figure 17 displays the properties of runtimes for grooming algorithms functioning as pileup
mitigators as we vary the average number of layered minimum bias events, ⟨nPU⟩. The
tree-based grooming strategies, such as Soft Drop and P-RS, are the fastest. P-IVS is an
order of magnitude slower. Finally, P-AS and CS are the slowest, with runtimes of O(1s)
even for a reasonable number of pileup events. The combination of high speed and high
performance of balanced P-RS provides simple preliminary evidence for their utility in the
removal of pileup.

– 50 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
7

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

W
as

se
rs

te
in

,
n

o
co

rr
ec

ti
on

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

SDβ=0

SDβ=1

SDβ=2

M
ore

in
h

eren
tly

rob
u

st

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

W
as

se
rs

te
in

,
n

o
co

rr
ec

ti
on

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

P-AS

P-IVS

(b)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

W
as

se
rs

te
in

,
n

o
co

rr
ec

ti
on

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

P-RSFf=0

P-RSFf=3/4

P-RSFf=1

(c)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.001

0.002

0.003

0.004

0.005

U
E

-C
or

re
ct

ed
W

as
se

rs
te

in

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

SDβ=0

SDβ=1

SDβ=2

B
etter

after
correction

(d)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

U
E

-C
or

re
ct

ed
W

as
se

rs
te

in

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

P-AS

P-IVS

(e)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

U
E

-C
or

re
ct

ed
W

as
se

rs
te

in

UE Subtracted C
(2)
1

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

P-RSFf=1/2

P-RSFf=0

P-RSFf=3/4

P-RSFf=1

(f)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

T
u

n
ed

δz
(U

E
)

cu
t

P-RSFf=1/2

SDβ=0

SDβ=1

SDβ=2

S
m

aller
δz

cu
t

for
correction

UE Subtracted C
(
1
2)

105 QCD Jets, Pythia 8.244

pT > 500 GeV, anti-kT , R = 1

(g)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.000

0.005

0.010

0.015

0.020

0.025

0.030

T
u

n
ed

δz
(U

E
)

cu
t

P-RSFf=1/2

P-AS

P-IVS

UE Subtracted C
(
1
2)

105 QCD Jets, Pythia 8.244 

pT > 500 GeV, anti-kT , R = 1

(h)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z
(base)
cut

0.00

0.01

0.02

0.03

0.04

T
u

n
ed

δz
(U

E
)

cu
t

P-RSFf=1/2

P-RSFf=0

P-RSFf=3/4

P-RSFf=1

UE Subtracted C
(
1
2)

105 QCD Jets, Pythia 8.244 

pT > 500 GeV, anti-kT , R = 1

(i)

Figure 18. Wasserstein distance between jet C
(2)
1 distributions (top row) without UE correction

and (middle row) with UE correction, and (bottom row) the optimal value of δzcut for UE correction.
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B.3 Underlying event

For the underlying event, we present results for the Wasserstein distances between substruc-
ture distributions with and without UE, discussed in section 5.2, as well as the additional
grooming δzcut required for optimal UE correction. We collect these results in figure 18.

In each of the plots, a lower value along the y-axis — of either the Wasserstein distance
or the optimal additional δzcut — indicates a desirable property for UE correction. A lower
Wasserstein distance without UE correction indicates inherent robustness of the groomer to
the presence of UE. A lower UE-corrected Wasserstein distance indicates that the groomer
is able to better correct for the presence of UE. Finally, a lower δzcut indicates greater
robustness against UE: less additional grooming must be applied for UE correction.

Notably, figure 18d shows that the UE-corrected Wasserstein distance of P-RSFf=1 is
smaller than that of Soft Drop for several values of βSD and a range of z

(base)
cut , indicating

that P-RSFf=1 is a more delicate tool for the removal of additive contamination due to
UE. However, P-IVS and P-AS perform even better at UE removal, as shown in figure 18e.
It may be that simple improvements to P-RS that emulate the features of P-IVS and P-
AS, such as the “Hard-Balanced Recursive Subtractors” mentioned briefly in section 3.4,
may lead to even better performance in UE removal. Finally, while the P-RSF groomers
generally exhibit similar performance in UE correction, P-RSFf=0 performs poorly at UE
correction and is extremely sensitive to the effects of UE; this is unsurprising, as P-RSFf=0
deliberately grooms away hard radiation and leaves in soft radiation, such as the radiation
contributed by UE.

Since the procedure we use to study the ability of each groomer to remove UE is based
on a computationally expensive optimization of δzcut, the plots we show in figure 18g have
some unphysical, jagged behavior, especially in the second two rows. We expect that with
a dedicated study with better statistics that the jagged behavior of these plots will be
smoothed, but that the qualitative nature of our conclusions will remain unchanged.

C Towards resummed recursive subtraction

We would like to gain theoretical insight, where possible, into the properties of Piranha-
groomed jets. To move towards a perturbative understanding of Piranha, we begin by
studying the behavior of P-RSF at leading order (LO), deriving the results for P-RSF sub-
structure presented in section 3.3, and describe why this is sufficient for generic Piranha
groomers at LO. Beyond LO, we find difficulties in using existing resummation techniques
because of the intricate correlations between subtractions of different emissions. Nonethe-
less, we can study the specific example of P-RSFf=1 to obtain analytic resummed results
up to leading logarithmic accuracy (LL) and numerical results beyond LL.

The angular-ordered, tree-based structure of P-RSF is an important feature that helps
facilitate perturbative calculation. In particular, we recall that the branching structure
of an angular-ordered tree of emissions is comparable to the history of coherent parton
branchings in the parton model [123], and that the philosophy of local parton-hadron
duality [145–148] asserts that energy flows are not dramatically changed in the presence
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of hadronization. We may therefore approximate the probability of finding a physical
particle within an angular-ordered jet tree by the probability of finding an unphysical,
unconfined QCD parton with the same energy and angle. Each partonic emission in a jet
is accompanied by a factor of the strong coupling αs, enabling a perturbative analysis of
the behavior of groomed observables.

We focus on quantifying the substructure of Piranha-groomed jets using the two-
prong generalized energy correlation functions (ECFs) of ref. [39]. These were described
by eqs. (3.2) and (4.2), and we repeat their approximate form in the central (y = 0) and
narrow (R0 ≪ 1) limit here for convenience:

C
(ς)
1 ≃ 1

2

M∑
i=1

M∑
j=1

zizj

(
θij

R0

)ς

. (C.1)

As before, zi indicates the energy fraction of particle i, θij indicates the opening angle
between particles i and j, and R0 is the jet radius.

The C
(ς)
1 furnish a set of interesting but relatively simple observables to study in

the context of Piranha. The behavior of the Piranha groomed jet pT , for example, is
relatively uninteresting: since the Piranha groomers discussed in this paper operate by
subtracting a fixed amount of transverse momentum

∆pT = zcut pT = ρ Ajet, (C.2)

the changes to the transverse momentum of a jet due to the P-RSF grooming procedure
are set trivially by the parameter zcut. However, as discussed in section 3.3, refining
calculations of observables involving the energy fraction zg or angle rg of the first emission
to pass the grooming is a nuanced task that we will defer to future work.

We discuss the leading behavior of the distributions for P-RSF groomed ECFs in ap-
pendix C.1, with a brief discussion of the LO behavior of Piranha groomers in general.
We discuss the behavior of P-RSF1 groomed ECFs at resummed accuracy, comparing re-
sults obtained with perturbative QCD, leading logarithmic parton showers, and Pythia
8.244, in appendix C.3. We introduce the mathematical technology we use for calcula-
tions in perturbative QCD in appendix C.4, and our leading logarithmic parton shower in
appendix C.5.

C.1 Substructure at fixed order

For convenience, we first briefly repeat some comments made in section 3.3 while discussing
the behavior of P-RSF at lowest order in αs (LO). At LO, the emission of a single parton
with energy fraction z and angle θ is described approximately by the pseudo-probability
distribution

αs

π
pi(z)

1
θ
≈ 2CRiαs

π

1
z

1
θ

, (C.3)

where pi(z) is a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting func-
tion [131–133] and CRi is the quadratic Casimir for the SU(3) color representation Ri
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of the mother parton, with CF = N2
C−1

2NC
= 4

3 for quarks and CA = NC = 3 for gluons.23 We
use reduced splitting functions,

pi(z) = pi(z) + pi(1− z), (C.4)

with z ∈ (0, 1/2), which describe the probability distribution of the softest parton produced
in the splitting.

The singular nature of the DGLAP splitting functions in the limits z, θ → 0 indicates
that the phase space of partonic emissions is dominated by emissions with small energy
fraction z and angle θ. The problems posed by these singularities are addressed systemati-
cally by resummation, and we review the resummation method we apply here (often called
the CAESAR method [57, 135]) in appendix C.4. The non-singular pieces of these splitting
functions are written explicitly in eqs. (C.20) and (C.21).

Because each emission is suppressed by a factor of αs, the behavior of the P-RSF
groomed ECFs of eq. (C.1), away from C

(ς)
1 = 0, is determined by the phase space distri-

bution of two-parton jets whose particles survive the P-RSF grooming procedure, up to
corrections proportional to α2

s. If the two partons survive the grooming procedure, they
can be described with the modified energy fractions

z′soft = z − f zcut > 0, (C.5a)
z′hard = 1− z − (1− f)zcut > 0, (C.5b)

where z is the original energy fraction of the softer parton. The groomed jet ECF then
takes the form

C
(ς)
1 (z,θ)= (z−f zcut)

(
θ

R0

)ς (1−z−(1−f)zcut)
(1−zcut)2 ≈ (z−f zcut)

(
θ

R0

)ς (1−(1−f)zcut)
(1−zcut)2 .

(C.6)
In the last step, we use that the phase space of the emission is dominated by regions with
z, θ ≪ 1. The factors of (1 − zcut)2 that appear in the denominators of eq. (C.6) emerge
from the normalization of the groomed C

(ς)
1 by the groomed jet pT , as in the definition of

eq. (C.1).
We also note that if either of the partons in our two-parton configuration at LO is

entirely groomed away, the groomed value of C
(ς)
1 is zero. The region of phase space where

one parton is groomed away at LO conspires with virtual contributions and the one-parton
configuration with no splittings to ensure that the C

(ς)
1 distribution integrates to one. These

contributions may quickly be calculated once we find the distribution away from the origin,
C

(ς)
1 > 0, and we include them at the end of the following discussion.

In the DGLAP splitting functions, the energy fraction z takes values from 0 to 1.
Since the C

(ς)
1 are sensitive to the softest emission in the jet, we are instead interested in

23By focusing on the singular pieces of the splitting function in eq. (C.3), we implicitly focus on the
probability that a gluon is emitted from the mother parton. For example, a quark may emit a gluon,
so that the resulting final state consists of both a gluon and a quark, while a gluon may split into two
gluons. In the language of splitting functions, a gluon may in principle split into two quarks; however, the
associated splitting function does not have any singularities as z → 0 and is therefore sub-leading to the
singular behavior reflected in eq. (C.3).
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restricting z to take values from 0 to 1/2. We are therefore interested in the reduced splitting
functions, p̄(z) = p(z) + p(1− z); these have the same singular behavior as the unmodified
DGLAP splitting functions near z = 0, but are only used in the range z ∈ (0, 1/2). From
these considerations, the fixed-order distribution of C

(ς)
1 away from zero becomes

ρ
(LO)
i, ς (C > 0) = αs

π

∫ R0

0

dθ

θ

∫ 1/2

0
dz p̄i(z)δ

(
C − C

(ς)
1 (z, θ)

)
, (C.7)

where C
(ς)
1 (z, θ) is the functional form of the groomed ECF given in eq. (C.6).

Up to terms that are power-suppressed in C, zcut, or both, the fixed-order distribution
for the groomed observable away from C = 0 is

ρ
(LO)
i, ς (C > 0) = 2αsCRi

ς π

1
C

(
2 tanh−1

(
1− 2C̃ − 2 f zcut

)
+ Bi +O (C, zcut)

)
(C.8a)

= 2αsCRi

ς π

1
C

(
− log

(
C̃ + f zcut

)
+ Bi +O (C, zcut)

)
(C.8b)

where C̃ = C × (1− zcut)2/(1− (1− f)zcut), CRi is the quadratic Casimir of the color rep-
resentation of the initiating parton, and we have defined the factor Bi to capture behavior
from non-singular components of the splitting functions: Bq = −3/4 for quark initiated
jets and Bg = −11/12 + nf /(6CA) for gluon initiated jets.

Including the O(α0
s) jet configuration with a single parton for which C

(ς)
1 = 0, the two-

parton contributions for which z < fzcut and the softer emission is completely eliminated,
and the virtual contributions at O(α1

s), we can write the full LO probability distribution
for C

(ς)
1 as

ρ
(LO)
i, ς (C) ≈ δ(C) + 2αsCRi

ς π

[ 1
C

(
− log

(
C̃ + f zcut

)
+ Bi +O (C, zcut)

)](Cmax)

+
, (C.9)

where Cmax = (1/2 − fzcut)(1 − (1 − f)zcut)/(1 − zcut)2 is the maximum value of C
(ς)
1 ,

and we have fixed the normalization of the distribution with plus-function regularization.24

The plus-function regularized expression of eq. (C.9) may be derived by replacing p(z)
in eq. (C.7) with its plus-function analog. Alternatively, one can recognize that the full
distribution for C

(ς)
1 must integrate to one even at LO, and that additional contributions

to the LO distribution in eq. (C.8) can only come from the regions of phase space where
C

(ς)
1 = 0; this is enough to uniquely specify the result of eq. (C.9) at LO.

Unlike the LO distributions for traditionally groomed jet ECFs, such as those of Soft
Drop [3], the LO distributions for P-RSFf=1/2 and P-RSF groomed C

(ς)
1 do not exhibit

piece-wise behavior. While the piece-wise behavior of Soft Drop observable distributions is
smoothed out by all-orders effects [134], the smoothness of Piranha-groomed distributions
at LO is a manifestation of their continuity.

24The plus-function regulation of the function q(x) is a distribution [q(x)](x0)
+ defined by its integral

against any function f(x) in a suitable space of test functions,∫ x0

0
dx[q(x)](x0)

+ f(x) =
∫ x0

0
dx q(x) (f(x) − f(0)) . (C.10)

See appendix B of ref. [149] and the presentation of ref. [150] for satisfying discussions.
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C.2 The groomed energy fraction for a single emission

Next, we discuss the groomed energy fraction, zg, of the first emission to survive the groom-
ing procedure. In Soft Drop, zg is the energy fraction of the first emission to pass the Soft
Drop criterion z > zcutθ

βSD . In P-RSF, zg is the groomed energy fraction of the first
emission that is not entirely removed by the grooming, which we call the critical emission.

The behavior of zg for Soft Drop was derived to double-logarithmic accuracy by
ref. [130] with the technology of Sudakov safety. Expanding their double-logarithmic result
to O(αs), the zg distribution for Soft Drop takes the approximate form

ρi, SD(zg;βSD)=



2αsCRi

π|β|
pi(zg) log(zg/zc)Θ(zcut < zg)+O(α2

s), βSD < 0;

pi(zg)∫ 1/2
zcut

dz pi(z)
Θ(zcut < zg), βSD =0;

√
αsCRi

β
pi(zg)+

2αsCRi

β
pi(zg) logmin(2zcut,2zg)+O(α3/2

s ), βSD > 0,

(C.11)
where i again indicates the flavor (quark or gluon) of the initiating parton, and we note that
the expression for βSD = 0 receives no O(αs) corrections at double-logarithmic accuracy.
If βSD ≤ 0, the probability distribution has no support when zg < zcut because zg is
determined by the Soft Drop criterion; the vanishing of the zg distribution when zg < zcut
for βSD ≤ 0 therefore reflects the soft discontinuous behavior of Soft Drop. If βSD > 0
there is instead a kink at zg = zcut that similarly reflects Soft Drop’s soft discontinuity.

The behavior of the P-RSF zg distribution is more subtle, for reasons we discuss
below. At the level of a single emission, however, the zg distribution for Soft Drop may be
translated directly to P-RSF because of the similarities between Soft Drop with β = 0 and
P-RSF:25

ρi, P-RSF(zg; f) = (1− zcut)
pi [(1− zcut) zg + fzcut]∫ 1/2

fzcut
dz′ p(z′)

+O(αs). (C.12)

ρi, P-RSF(zg; f) has support in the domain zg ∈ (0, (1/2− fzcut) / (1− zcut)) at this order
of accuracy. The additional factors of (1− zcut) relative to eq. (C.11) capture the fact that
zg is normalized further after grooming: zg = (z0 − fzcut)/(1 − zcut), where z0 denotes
the ungroomed softer energy fraction. The lower limit fzcut on the integration variable z′

reflects that we consider configurations for which the softer emission survives the grooming
procedure.

Much like Soft Drop with βSD = 0, the LO behavior of the P-RSF zg distribution
is determined by the fact that the first surviving emission must have an energy fraction

25In eq. (C.12), we choose zg to be the groomed energy fraction of what had been the softer emission
before grooming, regardless of which emission is softer after grooming. This avoids additional corrections
if fsoft < 1/2, where more grooming is applied to the harder emission than the softer emission at each
branch and it becomes possible that the harder of two ungroomed emissions becomes the softer of the two
emissions after grooming. If we instead define zg to be the softer groomed emission, there are corrections
to this formula for zg > 1/2 − O(zcut) when fsoft < 1/2. We also assume that zcut < 1/2; if fsoft < 1/2
and zcut > 1/2, there are additional O(zcut) corrections to eq. (C.12) due to the constraint that the harder
ungroomed emission is not entirely groomed away.
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greater than the assigned grooming. At LO, there is a single emission, and therefore the
assigned grooming is simply fzcut. Unlike Soft Drop, however, the zg distribution for P-
RSF has support down to zg = 0: a two-parton event with z = fzcut + δ, δ ≪ 1, is mapped
to a groomed two-parton event with zg = δ, while the two-parton event with z = fzcut − δ

is mapped to a one-parton event; though zg is undefined in the latter case, where the
groomed jet consists of only a single parton, the fact that zg can become infinitesimally
small is a mark of the continuity of P-RSF.

Improving the accuracy of the calculation of zg for P-RSF will require a more detailed
analysis which we leave to future work. An important complication emerges because there
may be emissions before the critical emission that can soak up some of the grooming;
the amount by which the critical emission is groomed is therefore not zcut but a smaller
effective value, z

(eff)
cut = zcut −∆zcut, where ∆zcut depends on the energy fractions of earlier

emissions. This leads to problems when following the approach of ref. [130], suited to the
calculation of zg for Soft Drop. Ref. [130] calculates the distribution of zg in the framework
of Sudakov safety by first marginalizing over the distribution of the angle of the critical
emission, rg. However, the distribution of rg depends on the amount by which the critical
emission is groomed, z

(eff)
cut , while a leading logarithmic calculation of z

(eff)
cut depends on the

value of rg. The circular dependence of the distributions of rg and z
(eff)
cut prevents us from

applying the formalism of ref. [130] without more careful modification.

C.3 Substructure at leading logarithmic accuracy and beyond

The global nature of Piranha grooming algorithms leads to intricate correlations between
the grooming of different final-state particles, and thus to complications in perturbative
calculations beyond LO. For P-RSFf=1/2, P-IVS, and P-AS, every particle in a jet is
groomed by some amount, and the grooming of any particular final-state particle is cor-
related with the grooming of every other. This subtlety renders existing techniques for
multiple emissions calculations less effective. Piranha-groomed observables depend on
global information, and a more detailed understanding of Piranha-groomed correlators
will require techniques that can elucidate global information associated with a jet.

While we do not get around this subtlety for the Piranha grooming procedures pre-
sented in this paper, we may use P-RSF to at least gain some intuition for the resummed
behavior of recursive subtractors. In particular, we navigate around the subtleties associ-
ated with Piranha by studying the substructure of P-RSF with fsoft = 1, or P-RSFf=1.
Crucial to our analysis is that P-RSFf=1 eventually terminates, such that it does not nec-
essarily affect every particle within an event.26 Due to this additional simplicity, we can
study P-RSFf=1 at leading logarithmic (LL) accuracy in slightly more detail, and find
analytic expressions for observables related to the first emission to survive the grooming
procedure, or critical emission.

26P-RSFf=0 is another subtraction algorithm that eventually terminates, but it subtracts away hard
radiation instead of soft radiation. Therefore, we focus on P-RSFf=1 in the discussion below. We leave a
more detailed survey of the analytic properties of P-RSFf=1/2, P-RSFf=0, and Recursive Subtraction more
generally to future work.
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The calculation of these resummed distributions is discussed in more detail in ap-
pendix C.4, whose methods may be used to show that the LL distribution for the energy
fraction z and the angle θ of the first emission to survive the P-RSF1 procedure is

ρ
(LL)
crit (zcrit, θcrit) =

2CRαs

π

1
zcrit

1
θcrit

exp
[
−2CRαs

π
log θcrit log 2zcut

]
. (C.13)

In eq. (C.13) and in the remainder of our discussion, we suppress the index i denoting
the flavor of the initiating parton because our LL results depend unambiguously on the
representation of the initiating parton through CR.

Using this resummed distribution, the singular pieces of the splitting function, and
dropping subleading terms in zcut, we use the cumulative analog of eq. (C.7) at LL to find
the cumulative distribution Σ(LL)

ς, crit(C) for the contribution of the critical emission to the
groomed C

(ς)
1 for general fsoft = f :

Σ(LL)
ς, crit(C) = Cηf + 2CRαs

ςπ

(
C

f zcut

)ηf 1
ηf (ηf − 1)

×
[(

f zcut
C

)ηf−1
2F1

(
1, 1− ηf , 2− ηf ,− C

f zcut

)

+
(

f zcut
C

)ηf

(ηf − 1) log
(
1 + C

f zcut

)
− (f zcut)ηf−1

2F1 (1, 1− ηf , 2− ηf , 1− 1/(2 f zcut))

− (f zcut)ηf (ηf − 1) log (1/(2 f zcut))
]
,

(C.14)

where we have defined
ηf = −2CRαs

ςπ
log(2 f zcut). (C.15)

To gain some intuition for this intimidating expression, we may also expand this to first
order in our fixed coupling αs to retrieve

Σ(LL)
ς crit(C) ≈ 1 + 2CRαs

ςπ

(
− log(2 f zcut) logC + Li2

(
− C

f zcut

)
− Li2(1− 1/(2 f zcut))

)
.

(C.16)
Taking a derivative gives

ρ
(LL)
ς crit(C > 0) = d

dC
Σ(LL)

ς crit(C > 0) ≈ −2CRαs

ς π

1
C

log (2C + 2fzcut) , (C.17)

which more clearly reveals the LL contribution of the critical emission to the groomed
value of C

(ς)
1 . Eq. (C.17) differs from the LO result of eq. (C.8) by a factor of 2 inside the

logarithm simply because we have integrated z from 0 to 1/2 and used only the singular
parts of the splitting function in computing the LL result, while the LO result includes
non-singular pieces of the splitting function. By noting that the probability distribution
must integrate to 1, one can also produce an expression with end-point contributions at
C = 0 which can then be compared to eq. (C.9).
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Even for P-RSF with fsoft = 1, however, the subtractive nature of the grooming pro-
cedure leads to additional subtleties. Usually, the distribution of partonic emissions in the
log z–log θ plane is approximately uniform, so that a particular emission will tend to have
an exponentially higher contribution to the two-pronged substructure of a jet than any
other. Since the first emission to survive an angular ordered hard-cutoff grooming proce-
dure such as Soft Drop will have a non-negligible energy fraction z > zcut and a large angle,
it is this first surviving emission, the critical emission, that contributes dominantly to C

(ς)
1 .

This trick made the original calculation of Soft Drop groomed substructure quite simple [3].
In the case of P-RSFf=1, however, the critical emission is partially groomed and may

have a groomed energy fraction zP-RSF1 ∼ z − zcut ≪ 1. It is therefore possible for other
emissions — the ungroomed subsequent emissions which are narrower than the critical
emission and therefore untouched by the P-RSFf=1 algorithm — to contribute greater val-
ues to C

(ς)
1 . The ungroomed subsequent emissions after the P-RSFf=1 algorithm terminates

can lead to larger contributions to substructure observables than they would in the case of
Soft Drop.

As a result, performing resummed calculations of Soft Drop groomed substructure
distributions that use only the critical emissions are more accurate than calculations for P-
RSFf=1 that only use the critical emission. The relative accuracy of the LL, single-emission
result for Soft Drop and P-RSFf=1 is demonstrated in figures 19a and 19c, which compares
the fixed-order behavior of C

(2)
1 distributions for jets groomed with Soft Drop or P-RSFf=1,

respectively, using either the critical emission or all emissions in the jet. Our parton shower
procedure is inspired by ref. [151] and is described in more detail in appendix C.5. Including
multiple emissions does not dramatically change the Soft Drop substructure distribution,
but leads to non-negligible changes in P-RSFf=1 substructure distributions.

We may include effects from the running of the strong coupling constant and multiple
emissions within the ungroomed jet to determine the behavior of the cumulative distri-
bution of C

(ς)
1 at an even higher level of accuracy, modified leading logarithmic (MLL)

accuracy, as described in appendix C.4. While including these features in our calculation
does not fully achieve next-to-leading-logarithmic (NLL) accuracy, the MLL calculation is
an important piece of the full NLL result. To consider the effects of several emissions on
the distribution of the groomed ECFs, we convolve the probability distributions of several
emissions that contribute to the total observable C

(ς)
1 :

ρ(MLL)
ς (Ctot) =

∫ 1/2

f zcut
dzcrit

∫ 1

0
dθcrit ρcrit(θcrit)ρcrit(zcrit|zpre)

×
∫

dzpre ρpre(zpre|θcrit)
∫

dcsub ρsub(csub|zcrit, θcrit)

× δ
(
Ctot − C

(ς)
1, crit(θcrit, zcrit, zpre)− csub

)
.

(C.18)

Each factor of ρ in eq. (C.18) indicates a resummed probability distribution corre-
sponding to a particular emission, discussed in greater detail in appendix C.4. At the
MLL level of accuracy, these resummed probability distributions are all calculated with a
running coupling αs. We model non-perturbative effects by freezing the value of αs below
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Figure 19. Distributions of the observable C
(2)
1 ≈ m2/p2

T of eq. (C.1) for quark jets groomed
with SDβ=0 (top row) and P-RSFf=1 (bottom row), with and without multiple emissions, at (left
column) LL accuracy and (right column) MLL accuracy. For each plot, we display the results of
the convolution method of eq. (C.18) using numerical integration and perturbative QCD with 106

phase space samples as well as the parton shower algorithm of appendix C.5. At LL, we compare
these results to the analytic prediction of eq. (C.14); at MLL, we compare them to parton-level
and hadron-level results obtained with Pythia 8.244 using the anti-kt algorithm. The figures
demonstrate that P-RSFf=1 is less sensitive to hadronization corrections in the large observable
regime, near C

(2)
1 ≈ 10−2, and that P-RSFf=1 groomed substructure is more sensitive to the effects

of multiple emissions than that of Soft Drop.

the non-perturbative scale of µfreeze = 1 GeV, as in eq. (C.30). Variations in our choice of
non-perturbative scale lead only to small changes to our results.

The expressions that describe multiple emissions within the groomed jet are:

• ρcrit(θcrit)ρ(zcrit|zpre) represents the probability distribution for the emission angle
θcrit and energy fraction zcrit of the critical emission, or the first emission to survive
the P-RSFf=1/2 procedure. This distribution is conditioned on the presence of earlier
emissions that modify the grooming procedure.
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• ρpre(zpre|θcrit) encodes the probability that emissions that are wider than the critical
emission, which we call pre-critical emissions, have an energy fraction zpre. Any
non-zero value of zpre mitigates the grooming of the critical emission.

• ρsub(csub|zcrit, θcrit) is the probability distribution for emissions narrower than the
critical emission to contribute a value csub to the overall observable C

(ς)
1 . We call these

emissions subsequent emissions, and they are unmodified by the grooming procedure.

• Finally, C
(ς)
1, crit(θcrit, zcrit, zpre) is the contribution of the critical emission to C

(ς)
1, tot,

in the presence of pre-critical emissions with energy fraction zpre.

We evaluate the convolution of eq. (C.18) through numerical integration and compare
the resulting distributions to the results from running coupling parton showers and Pythia
8.244 in figure 19. In particular, figures 19b and 19d compare our numerical MLL results
to hadron-level results for anti-kt jets in Pythia 8.244 and demonstrate that this trend of
comparatively large multiple-emissions effects in P-RSFf=1 continues at MLL.

First, let us note the difference between our MLL results obtained with Monte Carlo
integration, described in appendix C.4, and via parton showers, described in appendix C.5.
Our Monte Carlo results use a frozen coupling below a non-perturbative scale µfreeze = 1
GeV (see, for example, eq. (C.30)). Our parton shower results both freeze the coupling
at µfreeze = 1 GeV and stop the shower below a non-perturbative cutoff µcutoff = 1 MeV,
tuned by hand to match results from Pythia 8.244. The shower cutoff effectively sets αs

to zero below the scale set by µcutoff . Therefore, the plots in figures 19b and 19d effectively
show the results obtained with three different models of non-perturbative effects, with
Pythia 8.244 the most accurate. Our MLL parton shower results in figures 19b and 19d
are still normalized, but the normalization is not immediately evident due to the presence
of zero bins that are not shown in the logarithmically-scaled figures. In passing from
our rough parton shower model to the more accurate hadronization model of Pythia, we
expect that it is these zero bins that contribute to the additional hadron-level peak shown
in the Pythia data.

We also point out that in figure 19b, the parton-level Pythia 8.244 distribution for
C

(2)
1 also has an additional peak near the discontinuity in the parton-level LL result, in

the regime of relatively large C
(2)
1 ≈ 10−1. There is a comparable additional peak in the

hadron-level Pythia distribution for C
(2)
1 at this relatively large value for the observable.

We also note that, while our numerical results for P-RSFf=1 in the MLL figures agree
roughly with Pythia 8.244 in the regime of large C

(2)
1 , the hadron-level Pythia distribu-

tions have an additional peak near C
(2)
1 ≈ 3 × 10−6 due to hadronization corrections to

the observable at that scale. There is a similar additional peak in the hadron-level Pythia
distribution for mMDT (SDβ=0) groomed C

(2)
1 .

C.4 Summary of resummation: convolution

We now review the resummation procedure we apply in our LL and MLL results. In
particular, we introduce the basics of the CAESAR formalism, named due to its use in
the context of the Computer Automated Expert Semi-Analytical Resummer (CAESAR)
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program [57].27 To the best of our knowledge, this formalism was first introduced in the
context of semi-analytic resummation of event shapes [135]. While we include an intro-
duction here for completeness, a presentation of the concepts that appear in the following
discussion can be found in more elegant or complete forms throughout existing litera-
ture [57, 111, 135, 155–161].

The distribution of energy fraction and angle of a partonic emission in a jet is described
at fixed order by

ρi, f.o.(z, θ) = αs

π
p̄i(z)

1
θ

, (C.19)

where z ∈ (0, 1/2) is the energy fraction of the softer branch of the emission and p̄(z) =
p(z) + p(1− z) indicates a reduced splitting function, modified from the splitting function
p(z) to describe the softer branch. We would like to regulate the singularities of this
distribution by using techniques of resummation in perturbative QCD and thus gain greater
predictive power over groomed jet observables. In this appendix, we discuss the resummed
distributions used in the text and give some quick derivations.

To begin, we provide explicit expressions for the DGLAP splitting functions, which
describe the probability for the emission of partonic radiation from quarks and gluons, at
one loop accuracy:

pq→qg(z) = CF
1 + (1− z)2

z
, (C.20)

pg→gg(z) = 2CA
1− z

z
+ CAz(1− z) + TF nf (z2 + (1− z)2). (C.21)

Here, z is the energy fraction of an emitted gluon relative to the total energy of the emitted
gluon and an initial parton. pq describes the distribution of z in the case that a gluon
emitted by a quark, q → qg, and pg describes the distribution of z in the case g → gg.
TF = 1

2 is the Dynkin index of the fundamental representation of the standard model SU(3)
color gauge group, and nf indicates the number of quark flavors. In the following analysis,
we take nf = 5, including all quark flavors except for the top quark. As in the text, CR

is the quadratic Casimir for the representation R of SU(3). CR = CF = 4
3 for quarks and

CR = CA = 3 for gluons.
We also introduce some graphical notation to represent the probability of a splitting

whose angle θ and softer energy fraction z lie within some region of phase space. In particu-
lar, we describe the probability of finding a splitting in some region in the log

(
z−1)-log(θ−1)

plane, or Lund plane, with a diagram of the Lund plane with the corresponding region filled:

∫∫
αs

π

dθ

θ
dz [p̄i(z)](1/2)

+ ≜

log
(
θ−1)

log
(
z−1)

≜ , (C.22)

where the shaded oval in the Lund plane above represents an arbitrary shape, and [p̄(z)](1/2)
+

is a plus-function regulated reduced splitting function, p̄i(z) = pi(z) + pi(1− z), using the
27The results of our presentation below are also a special case of the more general, observable-independent

formalism of jet calculus [152] — closely connected to the resummation procedure used by parton showers
— for which pedagogical introductions may be found in e.g. refs. [153, 154].

– 62 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
7

definition of plus-function regularization of eq. (C.10).28 It follows, for example, that

= 0 and = = − . (C.23)

As depicted above, we may replace any vertical line — representing an integral over z at
fixed θ — or any vertical strip — representing an integral over z and some range of θ —
with zero, since the integral of a plus-function regulated distribution is zero.

In this paper, we are concerned with the jet ECFs C
(ς)
1 , which can be roughly calculated

by adding contributions from all of the emissions within a jet, such that the contribution
from each emission increases as z or θ increases and vanishes in the limit that z or θ

vanishes. We call such observables additive observables, and we may treat the C
(ς)
1 as

additive observables in our leading order computations.
The calculation of distributions of additive observables is simplified by the approxi-

mately uniform distribution of partonic emissions within the Lund plane. In particular,
the uniformity of emissions in the Lund plane implies that there is a single emission with
splitting parameters z and θ that we expect to be exponentially higher than the values of z

and θ of other emissions. Additive observables are therefore generically dominated by the
contribution from a single such emission, and we may approximate the probability that an
observable O is less than the sum of contributions from different emissions, P(O <

∑
i xi),

by the probability that it is less than the dominant value, P(O < X), with X = maxj xj .
We refer to this as the leading logarithmic (LL) approximation.

Mathematically, the LL approximation for an additive observable O, with contributions
xi > 0 from emissions i, asserts that there is a dominant contribution X = maxi xi such
that O =

∑
i xi ≈ X. This approximation holds up to effects that are sub-leading in αs

and logarithms of the observable. In the calculation of cumulative distributions for O, we
may write without approximation that Θ(O−

∑
i xi) ≤ Θ(O−X), where equality emerges

when we have at most a single non-zero xj = X. The LL approximation notes that xi/X

is exponentially small, and therefore that Θ(O−
∑

i xi) ≈ Θ(O−X). We should also note
that typically, calculations applying the LL approximation will also drop terms that are
suppressed by powers of X since these are sub-dominant to the leading logarithmic terms
in observable distributions.

We therefore define the LL cumulative probability distribution Σ(LL)
O (X) of an additive

observable O as the probability that no emission contributes a value greater than X to O,
up to sub-leading behavior in αs and logarithms or powers of the observable. The region
of phase space in which an observable contributes a value greater than X to the observable
is called a veto region. We sum and integrate over all possible final-state emissions outside
the veto region when calculating Σ(LL)

O (x).
28We may use [p̄(z)](1/2)

+ for the applications presented in this work because we are interested in observ-
ables whose dependence on energy is captured entirely by the energy fraction of the softer parton at any
branching. If we would like to deal with observables that require more information than just the softer
energy fraction, such as the flavor of the emitted partons, we would need to work with a plus-function
regulated splitting function [p(z)](1)

+ .
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As an example, the approximate mass of a jet due to a single emission is given by
m2 = Q2zθ2, where Q is the total energy of the jet. Therefore, the jet mass distribution is
given at leading logarithmic accuracy by

Σ(LL)
m2 (m2) =

∞∑
n=0

1
n!

(
αs

π

∫ 1

0

dθ

θ

∫ 1
2

0
dz [p̄i(z)][1/2]

+ Θ
(

m2

Q2 − zθ2
))n

= exp
[
−αs

π

∫ 1

0

dθ

θ

∫ 1
2

0
dz p̄i(z)Θ

(
zθ2 − m2

Q2

)]
.

(C.24)

In graphical notation, the analogous derivation is

Σ(LL)
m2 (m2) =

∞∑
n=0

1
n!


m 2Q 2 >

zθ 2



n

= exp

 −

m 2Q 2 <
zθ 2

 , (C.25)

where in the final equality, we see that the LL cumulative distribution is one over the
exponent of the veto region area. The area of the veto region for an observable is also
called the radiator RO for the observable.

A similar analysis yields the cumulative probability distribution function of the angle
θ for the first emission in the P-RSFf=1/2 procedure to satisfy z > zcut, which we call the
critical emission:

Σ(LL)
crit,θ(θcrit) = exp

 −

z<zcut

θ>θcrit

 = exp
[
−αs

π

∫ 1

θcrit

dθ

θ

∫ 1/2

zcut
dz p̄i(z)

]
, (C.26)

with a corresponding probability density

ρ
(LL)
crit,θ(θcrit) =

1
θcrit

αs

π

∫ 1/2

zcut
dz p̄(z) exp

[
−αs

π

∫ 1

θcrit

dθ

θ

∫ 1/2

zcut
dz p̄i(z)

]
. (C.27)

The resummed, joint probability distribution for the energy fraction and angle of the
critical emission is therefore

ρcrit(z, θ) = ρcrit,z(z|θ)ρcrit,θ(θ) = αs(κcrit) p̄(z)1
θ
exp

[
− 1

π

∫ 1

θ

dθ′

θ′

∫ 1/2

zcut
dz′p̄i(z′) αs(κ′)

]
,

(C.28)
where the argument κ of the strong coupling accounts for the possible inclusion of running
coupling effects. In particular, at LL we do not include effects due to the running of the
coupling, and κ = pT R is a scale set only by the dynamics and parameters of the jet.
When including running coupling effects, κ ≈ pT Rzθ ≈ p⊥ is approximately related to p⊥,
the momentum of the softer emission that is transverse to the momentum of the harder
emission. This is because QCD correlations and cross sections that use αs evaluated at
a scale κ generically include logarithms of the form log(p⊥/κ). To make these logarithms
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small, one may choose κ ∼ p⊥, which then requires that we evaluate the strong coupling
at the scale p⊥ as well. At one loop, the running of αs is captured by

α1−loop
s (κ) = αs(Q)

1 + 2αs(Q)β0 log
(

κ
Q

) , (C.29)

where β0 = (11
3 CA − 4

3Tf nf )/4π is a coefficient appearing in the QCD beta function:
β(αs) = −2β0α2

s +O(α3
s). Calculations accounting for effects from the running of the QCD

coupling and multiple emissions within a jet are called modified leading logarithmic (MLL)
calculations.

In the numerical MLL results we present in figure 19, we also model non-perturbative
QCD effects by freezing the coupling below a non-perturbative scale µfreeze,

α1−loop, frozen
s (κ;µfreeze) = α1−loop

s (κ)Θ(κ > µfreeze)+α1−loop
s (µfreeze)Θ(µfreeze > κ). (C.30)

Eq. (C.30) is a simplified analog of several motivated approaches to modeling the infrared
structure of QCD for which αs also approximately freezes below a non-perturbative scale.29

We take µfreeze = 1 GeV in our numerical calculations, and we note that changing our choice
of µfreeze leads only to small effects in substructure distributions such as those presented
in figure 19.

Let us now apply the technology reviewed in this appendix to distributions of P-RSFf=1
groomed substructure observables. An efficient way to include the multiple emission effects
that contribute to MLL accuracy is to consider P-RSF1 so that the grooming affects only
soft, wide-angle emissions and terminates before it affects narrow emissions forming the jet
core. For P-RSFf=1, we may divide up the emissions into three qualitative categories:

a) soft, wide angle pre-critical emissions, which are considered first in an angular-ordered
grooming procedure and thus completely removed by P-RSFf=1;

b) a single critical emission, which is the first soft emission to survive the grooming
procedure but is nonetheless modified by the grooming; and

c) subsequent emissions, which are left unmodified by the grooming procedure.

If we have the radiator for an additive observable O, it is simple to evaluate corrections
due to the presence of multiple emissions. These corrections can be evaluated with Laplace
transform methods [57] to find that at MLL accuracy,

Σ(MLL)
O (x) = e−RO(x)−γER′

O(x)

Γ (1 + R′
O(x))

, (C.31)

29The freezing of the effective value of αs in the low-energy regime can be argued in several complementary
contexts. The freezing of αs is discussed by ref. [162] in the context of optimized perturbation theory [163],
whose goal is to perform perturbative calculations that are minimally sensitive to changes in renormalization
scheme, by refs. [164, 165] in the context of expanding perturbative results around the Caswell-Banks-Zaks
fixed point Nf = N∗

f ≲ 11Nc/2 of the QCD beta function [166, 167], and by ref. [168] in the context of
holographic QCD. The freezing of αs may be also seen qualitatively by comparing experimental data to
field theoretic calculations [169–171], and is a special case of the more general program of using effective
couplings to describe non-perturbative infrared effects [141, 172–175]. See ref. [176] for a recent review of
models of the low-energy behavior of QCD with and without a frozen coupling.
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where γE is the Euler-Mascheroni constant, and the prime denotes a derivative with respect
to log(1/x).30 These considerations lead us to the MLL expressions for the effects of
multiple pre-critical and subsequent emissions on jet ECFs.

The cumulative distribution for the contribution of the subsequent emissions to the
observable C

(ς)
1 takes the form

Σ(MLL)
C

(ς)
sub

(C|θcrit, zcrit) =
e−Rsub(C)−γER′

sub(C)

Γ (1 + R′
sub(C)) ≈ e−Rsub(C) = Σ(LL)

C
(ς)
sub

(C|θcrit), (C.32)

where Rsub(C) is shorthand for R
C

(ς)
sub

(C|θcrit), defined as

R
C

(ς)
sub

(C|θcrit) =

C
(ς)
sub>zθς

θ>θcrit =
∫ 1/2

C/θς
crit

dc

c

∫ 1/2

c
dz p̄i(z)

αs(κ)
kς

. (C.33)

Of course, the value of zcrit will also have an impact on the subsequent emissions, but we
may safely neglect these corrections, which contribute only by scaling C

(ς)
sub by factors of

the form 1− zcrit.
The cumulative distribution for the energy fraction carried by pre-critical emissions is

calculated similarly and takes the form

Σ(MLL)
zpre (z|θcrit) =

e−Rpre(z|θcrit)−γER′
pre(z|θcrit)

Γ
(
1 + R′

pre(z|θcrit)
) ≈ e−Rpre(z|θcrit) = Σ(LL)

zpre (z|θcrit), (C.34)

where Rpre(z|θcrit) = Rzpre(z|θcrit) is given by

Rzpre(z|θcrit) =
∫ 1

θcrit

dθ

θ

∫ zcut

z
dz′ p̄i(z′)

αs(κ)
π

. (C.35)

We need only use the singular pieces of the splitting functions to achieve LL accuracy,
but, by definition, we must include the non-singular pieces of the splitting functions to
achieve MLL accuracy. While the MLL analysis modifies the LL analysis by including
additional, higher-order behavior, it is not quite sufficient to produce results at next-to-
leading logarithmic (NLL) accuracy; a full NLL result requires a more intricate treatment
including the effects of logarithms due to the constraint that radiation within the jet must
lie within the jet radius. These logarithms emerge because jet observables depend on only
subsets of the full phase (global) space of the outgoing radiation, and are known as non-
global logarithms [56, 60, 65, 81, 144, 177–188]. Regardless, the MLL results presented in
the paper provide a sense of the physics contained within NLL results.

30We note that additivity is a sufficient condition for eq. (C.31), but is not strictly necessary. For example,
a weaker but still sufficient condition, named recursive infrared-collinear (rIRC) safety, was introduced by
ref. [57]. The definition of rIRC safety is given in eqs. (3.4) and (3.5) of ref. [57], and an example of
additivity is furnished by the thrust observable, discussed in section 3.2 of ref. [57].
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Start the parton shower, with an initial angularity e
(0)
ς = 1/2.

Start with the angularity of the most recently generated emission,
whether it was accepted or vetoed. Generate a smaller angularity

for the next emission, e
(i+1)
ς , by the inverse transform method.

Sample the energy fraction z(i+1) of the softer splitting logarithmically from e
(i+1)
ς to 1/2.

Are e
(i+1)
ς and z(i+1) accepted by the veto algorithm?

Split this parton as dictated by the generated angularity and energy fraction.

Is the newly generated angularity below a non-perturbative scale µcutoff?

End the parton shower.

yes

yes

no

no

Figure 20. The basic code flow of the parton shower algorithm described in appendix C.5. The
veto algorithm is only used when considering MLL effects and is skipped at LL. The computations
of the algorithm are shown in orange, the decisions of the algorithm in green, and the start and
stop of the algorithm in red.

C.5 Summary of resummation: parton shower algorithm

In this appendix, we describe the parton shower we use in the text to provide an additional
check of our analytic results. Our parton shower, motivated by section 5 of ref. [151], is
available on GitHub [189]. A concise flow of code for our parton shower at MLL accuracy
is shown in figure 20.

In broad strokes, we order our parton shower by the angularity eς ≈ zθς of its emissions.
The angularity eς associated with a single emission i with softer energy fraction z and
opening angle θ takes the form e

(i)
ς = z (θ/R)ς , where R indicates the jet radius, which we

set to 1.
To obtain a parton shower valid at LL accuracy, we implement the following procedure:

1. Initialize a jet consisting of a single parton. The splittings of this parton will give rise
to all of the final-state particles in the jet at the parton level. We take the angularity
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e
(0)
ς = Rς/2 at this stage to be the maximum possible angularity for a single splitting

within the jet radius R.

2. If the angularity e
(i)
ς of the parton under consideration is below a pre-determined

cutoff scale, label it as a final-state parton. In our MLL parton shower, for example,
the cutoff scale is taken to be a non-perturbative scale µcutoff/pT, jet = 1 MeV/pT, jet,
where we have tuned the cutoff roughly by hand in order to get better agreement
with substructure distributions obtained with Pythia 8.244. Otherwise, the parton
splits into two daughter partons, and we continue to the next step.

3. The splitting of a parton is described by its angularity e
(f)
ς . Using the techniques of

the previous section, we may write the LL probability that there is no emission with
angularity greater than e

(f)
ς , given that there has been an emission with angularity

e
(i)
ς , as

P
(
no emission with eς > e(f)

ς | eς < e(i)
ς

)
= Σ(e(f)

ς )
Σ(e(i)

ς )
(C.36)

=exp
[
−CRαs

ς π

(
log2(2e(f)

ς )− log2(2e(i)
ς )
)]

.

We can therefore sample from the corresponding probability distribution by the in-
verse transform method: pick a random number r uniformly distributed between 0
and 1, and set it equal to the above cumulative distribution. The corresponding value
of e

(f)
ς is

e(f)
ς = 1

2 exp
[
−
√
log2(2e

(i)
ς )− ς π

CRαs
log(r)

]
, (C.37)

which is taken to be the angularity of the splitting from this mother parton.

4. Given the angularity e
(f)
ς of our splitting, we may now sample from the associated

distributions of the energy fraction z of the softer parton and the angle θ of the
splitting. In particular, at leading logarithmic order, these are both logarithmically
distributed. At this level of accuracy, we may therefore pick a uniformly distributed
random variable r′ and write

z = (2e(f)
ς )r′/2, θ = (2e(f)

ς )(1−r′)/ς . (C.38)

5. We may now continue this method recursively by returning to Step 2, allowing the
partons we produced in Steps 3 and 4 to split. We can achieve results at LL and
MLL accuracy if we allow only the harder of the two partons at any branch to split.

We can also extend this procedure to include running coupling effects and non-singular
pieces of the splitting function, which contribute to MLL accuracy. We produce these
higher-order effects by using veto method sampling [105, 151, 190]:

1. Generate an angularity, angle, and energy fraction with Steps 1–4 of the LL parton
shower algorithm, with the coupling αs of eqs. (C.36) and (C.37) replaced by a large
fixed coupling α̂ = 1

2 .
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2. As dictated by the veto method, accept the generated variables with a probability
given by the ratio ρ(MLL)(z, θ)/ρ̂(LL)(z, θ), where ρ(MLL) indicates the MLL probabil-
ity distribution function and ρ̂(LL) indicates the LL probability distribution function
with the coupling α̂. In particular, generate a new random number r′′ and accept
the generated splitting if

r′′ < Pno veto = p̄i(z)
pi, gen(z)

αs(κ)
α̂

, (C.39)

where pi, gen(z) = 2CRi/z is the singular piece of the splitting function, used implicitly
in drawing the angularity e

(f)
ς from an LL distribution in eq. (C.37). The choice

α̂ = 1/2 ensures that this probability is less than 1 if we freeze our coupling below
the non-perturbative scale µfreeze = 1 GeV.

3. If the veto method accepts the splitting, split the parton under consideration and
continue the parton shower recursively by returning to Step 1. If the veto method
rejects the splitting, we do not split the parton under consideration, but still return
to Step 1 to generate a new angularity, this time starting the splitting algorithm at
the scale of the rejected angularity. In particular, continue as dictated by eq. (C.37)
with the coupling α̂, by setting e

(i)
ς to the angularity rejected by the veto algorithm

in Step 2.

The final step is the key to the veto algorithm, and correctly takes into account the expo-
nentiation of multiple emission contributions in the MLL case.

Additionally, figures 19a and 19c compare the LL ECF C
(2)
1 ≈ m2/p2

T of eq. (C.1)
for quark jets groomed using mMDT (Soft Drop with βSD = 0) and P-RSF1, obtained
analytically, numerically, and using our parton shower procedure. The agreement between
these calculations provides a simple validation for the results we obtain analytically, using
numerical integration, and with parton shower methods for P-RSF1 in the appendices.
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