Abstract
We discuss further aspects of the higher spin dS/CFT correspondence. Using a recent result of Dunne and Kirsten, it is shown how to numerically compute the partition function of the free Sp(N) model for a large class of SO(3) preserving deformations of the flat/round metric on ℝ3 /S 3 and the source of the spin-zero single-trace operator dual to the bulk scalar. We interpret this partition function as a Hartle-Hawking wavefunctional. It has a local maximum about the pure de Sitter vacuum. Restricting to SO(3) preserving deformations, other local maxima (which exceed the one near the de Sitter vacuum) can peak at inhomogeneous and anisotropic values of the late time metric and scalar profile. Numerical experiments suggest the remarkable observation that, upon fixing a certain average of the bulk scalar profile at \( {{\mathcal{I}}^{+}} \), the wavefunction becomes normalizable in all the other (infinite) directions of the deformation. We elucidate the meaning of double trace deformations in the context of dS/CFT as a change of basis and as a convolution. Finally, we discuss possible extensions of higher spin de Sitter holography by coupling the free theory to a Chern-Simons term.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].
T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].
E. Mottola, Particle creation in de Sitter space, Phys. Rev. D 31 (1985) 754 [INSPIRE].
B. Allen, Vacuum states in de Sitter space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].
N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Annales Poincaré Phys. Theor. A 9 (1968) 109.
C. Schomblond and P. Spindel, Unicity conditions of the scalar field propagator Δ(1)(x, y) in de Sitter Universe, Annales Poincaré Phys. Theor. 25 (1976) 67 [INSPIRE].
M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev. D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].
J.S. Dowker and R. Critchley, Effective lagrangian and energy momentum tensor in de Sitter space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].
P. Candelas and D.J. Raine, General relativistic quantum field theory — An exactly soluble model, Phys. Rev. D 12 (1975) 965 [INSPIRE].
G. Boerner and H. Duerr, Classical and quantum fields in de Sitter space, Nuovo Cim. A 64 (1969) 669 [INSPIRE].
J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].
E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].
D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].
M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].
X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].
X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].
P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].
T. Banks and W. Fischler, Holographic theories of inflation and fluctuations, arXiv:1111.4948 [INSPIRE].
T. Banks, Holographic space-time from the Big Bang to the de Sitter era, J. Phys. A 42 (2009) 304002 [arXiv:0809.3951] [INSPIRE].
B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].
D. Anninos and F. Denef, Cosmic clustering, arXiv:1111.6061 [INSPIRE].
D.A. Roberts and D. Stanford, On memory in exponentially expanding spaces, JHEP 06 (2013) 042 [arXiv:1210.5238] [INSPIRE].
D. Harlow, S.H. Shenker, D. Stanford and L. Susskind, The three faces of a fixed point, arXiv:1203.5802 [INSPIRE].
J. Garriga and A. Vilenkin, Holographic multiverse, JCAP 01 (2009) 021 [arXiv:0809.4257] [INSPIRE].
M.K. Parikh and E.P. Verlinde, De Sitter holography with a finite number of states, JHEP 01 (2005) 054 [hep-th/0410227] [INSPIRE].
D. Anninos and T. Hartman, Holography at an extremal de Sitter horizon, JHEP 03 (2010) 096 [arXiv:0910.4587] [INSPIRE].
D. Anninos and T. Anous, A de Sitter hoedown, JHEP 08 (2010) 131 [arXiv:1002.1717] [INSPIRE].
D. Anninos, T. Anous, I. Bredberg and G.S. Ng, Incompressible fluids of the de Sitter horizon and beyond, JHEP 05 (2012) 107 [arXiv:1110.3792] [INSPIRE].
D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].
T. Hertog and J. Hartle, Holographic no-boundary measure, JHEP 05 (2012) 095 [arXiv:1111.6090] [INSPIRE].
A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP 04 (2013) 047 [arXiv:1211.4550] [INSPIRE].
M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].
M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].
C. Iazeolla, E. Sezgin and P. Sundell, Real forms of complex higher spin field equations and new exact solutions, Nucl. Phys. B 791 (2008) 231 [arXiv:0706.2983] [INSPIRE].
M.A. Vasiliev, Free massless fields of arbitrary spin in the de Sitter space and initial data for a higher spin superalgebra, Fortsch. Phys. 35 (1987) 741 [INSPIRE].
M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].
M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].
D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].
D. Das, S.R. Das, A. Jevicki and Q. Ye, Bi-local construction of Sp(2N)/dS higher spin correspondence, JHEP 01 (2013) 107 [arXiv:1205.5776] [INSPIRE].
G.S. Ng and A. Strominger, State/operator correspondence in higher-spin dS/CFT, Class. Quant. Grav. 30 (2013) 104002 [arXiv:1204.1057] [INSPIRE].
A. LeClair and M. Neubert, Semi-Lorentz invariance, unitarity and critical exponents of symplectic fermion models, JHEP 10 (2007) 027 [arXiv:0705.4657] [INSPIRE].
D. Anninos, F. Denef and D. Harlow, The wave function of Vasiliev’s universe — A few slices thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].
E. Sezgin and P. Sundell, On an exact cosmological solution of higher spin gauge theory, hep-th/0511296 [INSPIRE].
G.V. Dunne and K. Kirsten, Functional determinants for radial operators, J. Phys. A 39 (2006) 11915 [hep-th/0607066] [INSPIRE].
I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].
S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].
A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective cosmological constant, JETP Lett. 37 (1983) 66 [INSPIRE].
C. Fefferman and C.R. Graham, Conformal invariants, Elie Cartan et les Math1’ematiques d’aujoud’hui, Asterisque (1985) 95.
D. Anninos, G.S. Ng and A. Strominger, Asymptotic symmetries and charges in de Sitter space, Class. Quant. Grav. 28 (2011) 175019 [arXiv:1009.4730] [INSPIRE].
I. Gelfand and A. Yaglom, Integration in functional spaces and it applications in quantum physics, J. Math. Phys. 1 (1960) 48 [INSPIRE].
M. Bordag, K. Kirsten and J. Dowker, Heat kernels and functional determinants on the generalized cone, Commun. Math. Phys. 182 (1996) 371 [hep-th/9602089] [INSPIRE].
R. Bousso, Proliferation of de Sitter space, Phys. Rev. D 58 (1998) 083511 [hep-th/9805081] [INSPIRE].
S.W. Hawking, The quantum state of the universe, Nucl. Phys. B 239 (1984) 257 [INSPIRE].
A. Castro and A. Maloney, The wave function of quantum de Sitter, JHEP 11 (2012) 096 [arXiv:1209.5757] [INSPIRE].
K.G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D 7 (1973) 2911 [INSPIRE].
E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].
S.S. Gubser and I. Mitra, Double trace operators and one loop vacuum energy in AdS/CFT, Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].
S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].
D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
D. Anninos, G.S. Ng and A. Strominger, Future boundary conditions in de Sitter space, JHEP 02 (2012) 032 [arXiv:1106.1175] [INSPIRE].
J.B. Hartle, S.W. Hawking and T. Hertog, The classical universes of the no-boundary quantum state, Phys. Rev. D 77 (2008) 123537 [arXiv:0803.1663] [INSPIRE].
J.B. Hartle, S. Hawking and T. Hertog, No-boundary measure of the universe, Phys. Rev. Lett. 100 (2008) 201301 [arXiv:0711.4630] [INSPIRE].
S. Sarangi and S.-H.H. Tye, The boundedness of euclidean gravity and the wavefunction of the universe, hep-th/0505104 [INSPIRE].
O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].
S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].
S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].
E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings. Volume 2, M. Shifman et al. eds., Eorld Scientific, Singapore (2005), hep-th/0307041 [INSPIRE].
O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].
J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].
J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].
S. Banerjee et al., Topology of future infinity in dS/CFT, JHEP 11 (2013) 026 [arXiv:1306.6629] [INSPIRE].
L. Girardello, M. Porrati and A. Zaffaroni, 3D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].
S. Banerjee, S. Hellerman, J. Maltz and S.H. Shenker, Light states in Chern-Simons theory coupled to fundamental matter, JHEP 03 (2013) 097 [arXiv:1207.4195] [INSPIRE].
D. Radicevic, Singlet vector models on lens spaces, arXiv:1210.0255 [INSPIRE].
E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].
T. Banks, Some thoughts on the quantum theory of stable de Sitter space, hep-th/0503066 [INSPIRE].
L. Andersson and G.J. Galloway, DS/CFT and space-time topology, Adv. Theor. Math. Phys. 6 (2003) 307 [hep-th/0202161] [INSPIRE].
S. Banerjee et al., Topology of future infinity in dS/CFT, to appear.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1305.6321
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Anninos, D., Denef, F., Konstantinidis, G. et al. Higher spin de Sitter holography from functional determinants. J. High Energ. Phys. 2014, 7 (2014). https://doi.org/10.1007/JHEP02(2014)007
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2014)007