Skip to main content
Log in

Bi-local construction of Sp(2N)/dS higher spin correspondence

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive a collective field theory of the singlet sector of the Sp(2N) sigma model. Interestingly the Hamiltonian for the bilocal collective field is the same as that of the O(N) model. However, the large-N saddle points of the two models differ by a sign. This leads to a fluctuation Hamiltonian with a negative quadratic term and alternating signs in the nonlinear terms which correctly reproduces the correlation functions of the singlet sector. Assuming the validity of the connection between O(N) collective fields and higher spin fields in AdS, we argue that a natural interpretation of this theory is by a double analytic continuation, leading to the dS/CFT correspondence proposed by Anninos, Hartman and Strominger. The bi-local construction gives a map into the bulk of de Sitter space-time. Its geometric pseudospin-representation provides a framework for quantization and definition of the Hilbert space. We argue that this is consistent with finite N Grassmannian constraints, establishing the bi-local representation as a nonperturbative framework for quantization of Higher Spin Gravity in de Sitter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. M.A. Vasiliev, Holography, unfolding and higher-spin theory, arXiv:1203.5554 [INSPIRE].

  3. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Jevicki and B. Sakita, The quantum collective field method and its application to the planar limit, Nucl. Phys. B 165 (1980) 511 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  8. A. Jevicki, K. Jin and Q. Ye, Bi-local model of AdS/CFT and higher spin gravity, arXiv:1112.2656 [INSPIRE].

  9. A. Jevicki, K. Jin and Q. Ye, Collective dipole model of AdS/CFT and higher spin gravity, J. Phys. A 44 (2011) 465402 [arXiv:1106.3983] [INSPIRE].

    ADS  Google Scholar 

  10. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  11. S.R. Das and A. Jevicki, String field theory and physical interpretation of D = 1 strings, Mod. Phys. Lett. A 5 (1990) 1639 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].

  18. S.R. Das, S. Naik and S.R. Wadia, Quantization of the Liouville mode and string theory, Mod. Phys. Lett. A 4 (1989) 1033 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. G.S. Ng and A. Strominger, State/operator correspondence in higher-spin dS/CFT, arXiv:1204.1057 [INSPIRE].

  20. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  21. V. Balasubramanian, P. Hořava and D. Minic, Deconstructing de Sitter, JHEP 05 (2001) 043 [hep-th/0103171] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Banks, Some thoughts on the quantum theory of de Sitter space, astro-ph/0305037 [INSPIRE].

  23. A. Volovich, Discreteness in de Sitter space and quantization of Kähler manifolds, hep-th/0101176 [INSPIRE].

  24. M.K. Parikh and E.P. Verlinde, De Sitter holography with a finite number of states, JHEP 01 (2005) 054 [hep-th/0410227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D.A. Lowe, q-deformed de Sitter/conformal field theory correspondence, Phys. Rev. D 70 (2004) 104002 [hep-th/0407188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. L. Dyson, J. Lindesay and L. Susskind, Is there really a de Sitter/CFT duality?, JHEP 08 (2002) 045 [hep-th/0202163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Henneaux and C. Teitelboim, Relativistic quantum mechanics of supersymmetric particles, Annals Phys. 143 (1982) 127 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992) [INSPIRE].

    MATH  Google Scholar 

  30. R. Finkelstein and M. Villasante, The Grassmann oscillator, Phys. Rev. D 33 (1986) 1666 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. R. de Mello Koch and J.P. Rodrigues, Systematic 1/N corrections for bosonic and fermionic vector models without auxiliary fields, Phys. Rev. D 54 (1996) 7794 [hep-th/9605079] [INSPIRE].

    ADS  Google Scholar 

  32. R. Jackiw and A. Strominger, Wave function(al)s in the large-N limit, Phys. Lett. B 99 (1981) 133 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. H. Shimodaira, Some remarks on fields with negative propagators in quantum field theory, Nucl. Phys. 17 (1960) 486.

    Article  MATH  Google Scholar 

  34. S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].

  35. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Jevicki and S. Ramgoolam, Noncommutative gravity from the AdS/CFT correspondence, JHEP 04 (1999) 032 [hep-th/9902059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S N (X): symmetries and interactions, Nucl. Phys. B 577 (2000) 47 [hep-th/9907144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Jevicki and N. Papanicolaou, Classical dynamics in the large-N limit, Nucl. Phys. B 171 (1980) 362 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. F.A. Berezin, Models of Gross-Neveu type as quantization of classical mechanics with nonlinear phase space, Commun. Math. Phys. 63 (1978) 131 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. A. LeClair and M. Neubert, Semi-Lorentz invariance, unitarity and critical exponents of symplectic fermion models, JHEP 10 (2007) 027 [arXiv:0705.4657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947 [hep-th/0703096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. F.A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izv. 9 (1975) 341.

    Article  Google Scholar 

  43. E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. J. Ginibre, Statistical ensembles of complex, quaternion and real matrices, J. Math. Phys. 6 (1965) 440 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A. Selberg, Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944) 71.

    MathSciNet  MATH  Google Scholar 

  46. J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, arXiv:1112.1016 [INSPIRE].

  47. J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, arXiv:1204.3882 [INSPIRE].

  48. R. de Mello Koch, A. Jevicki, K. Jin, J.P. Rodrigues and Q. Ye, S = 1 in O(N )/HS duality, arXiv:1205.4117 [INSPIRE].

  49. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  51. S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  55. S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    ADS  Google Scholar 

  56. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Jevicki.

Additional information

ArXiv ePrint: 1205.5776

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D., Das, S.R., Jevicki, A. et al. Bi-local construction of Sp(2N)/dS higher spin correspondence. J. High Energ. Phys. 2013, 107 (2013). https://doi.org/10.1007/JHEP01(2013)107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)107

Keywords

Navigation