Skip to main content
Log in

Future boundary conditions in de Sitter space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider asymptotically future de Sitter spacetimes endowed with an eternal observatory. In the conventional descriptions, the conformal metric at the future boundary \( {\mathcal{I}^{ + }} \) is deformed by the flux of gravitational radiation. We however impose an unconventional future “Dirichlet” boundary condition requiring that the conformal metric is flat everywhere except at the conformal point where the observatory arrives at \( {\mathcal{I}^{ + }} \). This boundary condition violates conventional causality, but we argue the causality violations cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk two-point functions obeying this future boundary condition are not realizable as operator correlation functions in any normalizable de Sitter invariant vacuum, but they do agree with those obtained by double analytic continuation from anti-de Sitter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. R. Bousso, Positive vacuum energy and the N bound, JHEP 11 (2000) 038 [hep-th/0010252] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Banks, Some thoughts on the quantum theory of de Sitter space, astro-ph/0305037 [INSPIRE].

  5. T. Banks, Pedagogical notes on black holes, de Sitter space and bifurcated horizons, arXiv:1007.4003 [INSPIRE].

  6. N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Castro, N. Lashkari and A. Maloney, A de Sitter farey tail, Phys. Rev. D 83 (2011) 124027 [Addendum ibid. D 84 (2011) 089904] [arXiv:1103.4620] [INSPIRE].

    ADS  Google Scholar 

  8. T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP 12 (2002) 062 [hep-th/0210160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  10. D. Anninos, G.S. Ng and A. Strominger, Asymptotic symmetries and charges in de Sitter space, Class. Quant. Grav. 28 (2011) 175019 [arXiv:1009.4730] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. VII. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    ADS  Google Scholar 

  12. R. Sachs, Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. L.A. Tamburino and J.H. Winicour, Gravitational fields in finite and conformal Bondi frames, Phys. Rev. 150 (1966) 1039 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. F. Larsen, J.P. van der Schaar and R.G. Leigh, De Sitter holography and the cosmic microwave background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

  20. E. Schrödinger, Expanding universes, Cambridge University Press, Cambridge U.K. (1956).

    MATH  Google Scholar 

  21. M.K. Parikh, I. Savonije and E.P. Verlinde, Elliptic de Sitter space: dS/Z 2, Phys. Rev. D 67 (2003) 064005 [hep-th/0209120] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. A. Folacci and N.G. Sanchez, Quantum Field Theory and theelliptic interpretationof de Sitter space-time, Nucl. Phys. B 294 (1987) 1111 [INSPIRE].

    Google Scholar 

  23. G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. B. Allen, Vacuum states in de Sitter space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  Google Scholar 

  26. M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].

  27. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective cosmological constant, JETP Lett. 37 (1983) 66 [INSPIRE].

    ADS  Google Scholar 

  30. D. Anninos and T. Hartman, Holography at an extremal de Sitter horizon, JHEP 03 (2010) 096 [arXiv:0910.4587] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Anninos and T. Anous, A de Sitter hoedown, JHEP 08 (2010) 131 [arXiv:1002.1717] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Anninos, S. de Buyl and S. Detournay, Holography for a de Sitter-Esque geometry, JHEP 05 (2011) 003 [arXiv:1102.3178] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Spradlin and A. Volovich, Vacuum states and the S matrix in dS/CFT, Phys. Rev. D 65 (2002) 104037 [hep-th/0112223] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  35. H. Kodama and M. Sasaki, Cosmological perturbation theory, Prog. Theor. Phys. Suppl. 78 (1984) 1 [INSPIRE], appendix D.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gim Seng Ng.

Additional information

ArXiv ePrint: 1106.1175

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, D., Ng, G.S. & Strominger, A. Future boundary conditions in de Sitter space. J. High Energ. Phys. 2012, 32 (2012). https://doi.org/10.1007/JHEP02(2012)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)032

Keywords

Navigation