Skip to main content
Log in

Holography at an extremal De Sitter horizon

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS2 rather than AdS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev. D 15 (1977) 2738 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Hawking, J.M. Maldacena and A. Strominger, DeSitter entropy, quantum entanglement and AdS/CFT, JHEP 05 (2001) 001 [hep-th/0002145] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Bañados, T. Brotz and M.E. Ortiz, Quantum three-dimensional de Sitter space, Phys. Rev. D 59 (1999) 046002 [hep-th/9807216] [SPIRES].

    ADS  Google Scholar 

  5. T. Banks, Some Thoughts on the Quantum Theory of de Sitter Space, astro-ph/0305037 [SPIRES].

  6. T. Banks, More thoughts on the quantum theory of stable de Sitter space, hep-th/0503066 [SPIRES].

  7. T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12 (2006) 004 [hep-th/0609062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    ADS  Google Scholar 

  10. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. V.P. Frolov and K.S. Thorne, Renormalized Stress - Energy Tensor Near the Horizon of a Slowly Evolving, Rotating Black Holes, Phys. Rev. D 39 (1989) 2125 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. H. Lü, J. Mei and C.N. Pope, Kerr/CFT Correspondence in Diverse Dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].

    Article  Google Scholar 

  13. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. I.S. Booth and R.B. Mann, Cosmological pair production of charged and rotating black holes, Nucl. Phys. B 539 (1999) 267 [gr-qc/9806056] [SPIRES].

    Article  ADS  Google Scholar 

  15. H. Nariai, On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case, Sci. Rep. Tohoku Univ. Ser. 1 34 (1950) 160.

    MathSciNet  Google Scholar 

  16. H. Nariai, On a new cosmological solution of Einstein’s field equations of gravitation, General Relativity and Gravitation 31 (1999) 963.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. P.H. Ginsparg and M.J. Perry, Semiclassical Perdurance of de Sitter Space, Nucl. Phys. B 222 (1983) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. V. Cardoso, O.J.C. Dias and J.P.S. Lemos, Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions, Phys. Rev. D 70 (2004) 024002 [hep-th/0401192] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. A. Castro and F. Larsen, Near Extremal Kerr Entropy from AdS 2 Quantum Gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [SPIRES].

    Article  ADS  Google Scholar 

  21. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black Hole Superradiance From Kerr/CFT, arXiv:0907.3477 [SPIRES].

  22. A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal Kerr Throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [SPIRES].

    Article  ADS  Google Scholar 

  23. O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [SPIRES].

    Article  ADS  Google Scholar 

  24. F. Belgiorno, S.L. Cacciatori and F. Dalla Piazza, Quantum instability for charged scalar particles on charged Nariai and ultracold black hole manifolds, Class. Quant. Grav. 27 (2010) 055011 [arXiv:0909.1454] [SPIRES].

    Article  ADS  Google Scholar 

  25. M. Cvetič and F. Larsen, Greybody Factors and Charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [SPIRES].

    Article  ADS  Google Scholar 

  26. T. Hartman, W. Song and A. Strominger, Holographic Derivation of Kerr-Newman Scattering Amplitudes for General Charge and Spin, arXiv:0908.3909 [SPIRES].

  27. R. Bousso, Positive vacuum energy and the N-bound, JHEP 11 (2000) 038 [hep-th/0010252] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Bousso, O. DeWolfe and R.C. Myers, Unbounded entropy in spacetimes with positive cosmological constant, Found. Phys. 33 (2003) 297 [hep-th/0205080] [SPIRES].

    Article  MathSciNet  Google Scholar 

  29. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [SPIRES].

  30. N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Bousso, Quantum global structure of de Sitter space, Phys. Rev. D 60 (1999) 063503 [hep-th/9902183] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. R. Bousso and S.W. Hawking, (Anti-)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev. D 57 (1998) 2436 [hep-th/9709224] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 Black Holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Anninos, M. Esole and M. Guica, Stability of warped AdS 3 vacua of topologically massive gravity, JHEP 10 (2009) 083 [arXiv:0905.2612] [SPIRES].

    Article  ADS  Google Scholar 

  35. D. Anninos, Sailing from Warped AdS 3 to Warped dS 3 in Topologically Massive Gravity, JHEP 02 (2010) 046 [arXiv:0906.1819] [SPIRES].

    Article  Google Scholar 

  36. M.H. Dehghani, Quasilocal thermodynamics of Kerr de Sitter spacetimes and the dS/CFT correspondence, Phys. Rev. D 65 (2002) 104030 [hep-th/0201128] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. A.M. Ghezelbash and R.B. Mann, Entropy and mass bounds of Kerr-de Sitter spacetimes, Phys. Rev. D 72 (2005) 064024 [hep-th/0412300] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, arXiv:0708.3153 [SPIRES].

  41. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. T. Tachizawa and K.-i. Maeda, Superradiance in the Kerr-de Sitter space-time, Report of Sci. and Eng. Res. Lab, Waseda Univ., Tokyo Japan (1992), pg. 92 [SPIRES].

  43. B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. S.P. Kim and D.N. Page, Schwinger Pair Production in dS 2 and AdS 2, Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. A. Guijosa and D.A. Lowe, A new twist on dS/CFT, Phys. Rev. D 69 (2004) 106008 [hep-th/0312282] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. D.A. Lowe, q-deformed de Sitter/conformal field theory correspondence, Phys. Rev. D 70 (2004) 104002 [hep-th/0407188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartman.

Additional information

ArXiv ePrint: 0910.4587

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, D., Hartman, T. Holography at an extremal De Sitter horizon. J. High Energ. Phys. 2010, 96 (2010). https://doi.org/10.1007/JHEP03(2010)096

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)096

Keywords

Navigation