Skip to main content
Log in

A De Sitter hoedown

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Rotating black holes in de Sitter space are known to have interesting limits where the temperatures of the black hole and cosmological horizon are equal. We give a complete description of the thermal phase structure of all allowed rotating black hole configurations. Only one configuration, the rotating Nariai limit, has the black hole and cosmological horizons both in thermal and rotational equilibrium, in that both the temperatures and angular velocities of the two horizons coincide. The thermal evolution of the spacetime is shown to lead to the pure de Sitter spacetime, which is the most entropic configuration. We then provide a comprehensive study of the wave equation for a massless scalar in the rotating Nariai geometry. The absorption cross section at the black hole horizon is computed and a condition is found for when the scattering becomes superradiant. The boundary-to-boundary correlators at finite temperature are computed at future infinity. The quasinormal modes are obtained in explicit form. Finally, we obtain an expression for the expectation value of the number of particles produced at future infinity starting from a vacuum state with no incoming particles at past infinity. Some of our results are used to provide further evidence for a recent holographic proposal between the rotating Nariai geometry and a two-dimensional conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking, J.M. Maldacena and A. Strominger, DeSitter entropy, quantum entanglement and AdS/CFT, JHEP 05 (2001) 001 [hep-th/0002145] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Bañados, T. Brotz and M.E. Ortiz, Quantum three-dimensional de Sitter space, Phys. Rev. D 59 (1999) 046002 [hep-th/9807216] [SPIRES].

    ADS  Google Scholar 

  3. T. Banks, Some thoughts on the quantum theory of de Sitter space, astro-ph/0305037 [SPIRES].

  4. T. Banks, More thoughts on the quantum theory of stable de Sitter space, hep-th/0503066 [SPIRES].

  5. T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12 (2006) 004 [hep-th/0609062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [SPIRES].

  7. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [SPIRES].

    Article  ADS  Google Scholar 

  9. R. Bousso, Proliferation of de Sitter space, Phys. Rev. D 58 (1998) 083511 [hep-th/9805081] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. A.M. Polyakov, De Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. N.C. Tsamis and R.P. Woodard, The quantum gravitational back-reaction on inflation, Annals Phys. 253 (1997) 1 [hep-ph/9602316] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. I.S. Booth and R.B. Mann, Cosmological pair production of charged and rotating black holes, Nucl. Phys. B 539 (1999) 267 [gr-qc/9806056] [SPIRES].

    Article  ADS  Google Scholar 

  14. H. Nariai, On a new cosmological solution of Einstein’s field equations of gravitation, Sci. Rep. Tohoku Univ. Ser. 1 34 (1950) 160.

    MathSciNet  Google Scholar 

  15. H. Nariai, On a new cosmological solution of Einstein’s field equations of gravitation, Gen. Rel. Grav. 31 (1999) 963.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P.C.W. Davies, Thermodynamic phase transitions of Kerr-Newman black holes in de Sitter space, Class. Quant. Grav. 6 (1989) 1909 [SPIRES].

    Article  ADS  Google Scholar 

  17. M.H. Dehghani, Quasilocal thermodynamics of Kerr de Sitter spacetimes and the dS/CFT correspondence, Phys. Rev. D 65 (2002) 104030 [hep-th/0201128] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. T. Tachizawa and K.I. Maeda, Superradiance in the Kerr-de Sitter space-time, WU-AP-22-92 [SPIRES].

  19. P.R. Brady, C.M. Chambers, W.G. Laarakkers and E. Poisson, Radiative falloff in Schwarzschild-de Sitter spacetime, Phys. Rev. D 60 (1999) 064003 [gr-qc/9902010] [SPIRES].

    ADS  Google Scholar 

  20. N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Annales Poincare Phys. Theor. A 9 (1968) 109 [SPIRES].

    MathSciNet  Google Scholar 

  21. E. Mottola, Particle creation in de Sitter space, Phys. Rev. D 31 (1985) 754 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. B. Allen, Vacuum states in de Sitter space, Phys. Rev. D 32 (1985) 3136 [SPIRES].

    ADS  Google Scholar 

  23. D. Anninos and T. Hartman, Holography at an extremal de Sitter horizon, JHEP 03 (2010) 096 [arXiv:0910.4587] [SPIRES].

    Article  ADS  Google Scholar 

  24. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. A.M. Ghezelbash and R.B. Mann, Entropy and mass bounds of Kerr-de Sitter spacetimes, Phys. Rev. D 72 (2005) 064024 [hep-th/0412300] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. V. Balasubramanian, J. de Boer and D. Minic, Mass, entropy and holography in asymptotically de Sitter spaces, Phys. Rev. D 65 (2002) 123508 [hep-th/0110108] [SPIRES].

    ADS  Google Scholar 

  28. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. P.H. Ginsparg and M.J. Perry, Semiclassical perdurance of de Sitter space, Nucl. Phys. B 222 (1983) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Bousso and S.W. Hawking, The probability for primordial black holes, Phys. Rev. D 52 (1995) 5659 [gr-qc/9506047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Castro and F. Larsen, Near extremal kerr entropy from AdS 2 quantum gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Anninos, Sailing from warped AdS 3 to warped dS 3 in topologically massive gravity, JHEP 02 (2010) 046 [arXiv:0906.1819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Doukas, H.T. Cho, A.S. Cornell and W. Naylor, Graviton emission from simply rotating Kerr-de Sitter black holes: Transverse traceless tensor graviton modes, Phys. Rev. D 80 (2009) 045021 [arXiv:0906.1515] [SPIRES].

    ADS  Google Scholar 

  35. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982), pag. 340 [SPIRES].

    MATH  Google Scholar 

  36. S.P. Kim and D.N. Page, Schwinger pair production in dS 2 and AdS 2, Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover Inc., New York U.S.A. (1965), pag. 559.

    Google Scholar 

  38. V. Cardoso and J.P.S. Lemos, Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole, Phys. Rev. D 67 (2003) 084020 [gr-qc/0301078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. U. Khanal, Rotating black hole in asymptotic de Sitter space: perturbation of the space-time with spin fields, Phys. Rev. D 28 (1983) 1291 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A 17 (1984) L385 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Chen and C.-S. Chu, Real-time correlators in Kerr/CFT correspondence, JHEP 05 (2010) 004 [arXiv:1001.3208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  46. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysios Anninos.

Additional information

ArXiv ePrint: 1002.1717

Hoedown: American folk dance characterized by rotation of partners. A hoedown isillustrated by the The Traveling Hoedowners dance group: http://www.youtube.com/watch?v=I4lxfXltCxQ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, D., Anous, T. A De Sitter hoedown. J. High Energ. Phys. 2010, 131 (2010). https://doi.org/10.1007/JHEP08(2010)131

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)131

Keywords

Navigation