Skip to main content
Log in

Carbon diffusion in steels: A numerical analysis based on direct integration of the flux

  • Section I: Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In the early 1970s, Professor Dayananda developed a technique for the direct integration of fluxes from the concentration profiles in vapor-solid diffusion couples to determine diffusion coefficients and atomic mobilities. As part of a project to control and optimize the industrial carburization process in mild- and low-alloyed steels, a modified integration analysis was applied to determine the mass transfer coefficient in the gas boundary layer and carbon diffusivity in austenite. Because carbon flux and surface carbon content vary with time during single-stage carburizing even with a fixed carbon potential in the atmosphere, a mass balance at the gas-solid interface must serve as a boundary condition. This article discusses the numerical modeling of gas carburizing, and focuses on calculating the mass transfer and carbon diffusivity parameters using the simulated concentration profiles. This approach validates the proposed method by comparing the calculated parameters with those used in simulation. The results were compared with previous determinations and predictions reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wells and R.F. Mehl, Rate of Diffusion of Carbon in Austenite in Plain Carbon, in Nickel and in Manganese Steels, American Institute Mining Metallurgical Engineers, Technical Publication, 1940, p 1180

  2. K.E. Blazek and P.R. Cost, Carbon Diffusivity in Iron-Chromium Alloys,Trans. Jpn. Inst. Met., 1976,17(10), p 630–636

    Google Scholar 

  3. W. Batz and R.F. Mehl, Diffusion Coefficient of Carbon in Austenite,Trans. AIME, 1950,188, p 553–560

    Google Scholar 

  4. P. Stolar and B. Prenosil, Kinetics of Transfer of Carbon from Carburising and Carbonitriding Atmospheres,Metall. Mater., 1984,22(5), p 348–353

    Google Scholar 

  5. B.A. Moiseev, Y.M. Brunzel’, and L.A. Shvartsman, Kinetics of Carburizing in an Endothermal Atmosphere,Met. Sci. Heat Treat., 1979,21(5–6), p 437–442

    Article  Google Scholar 

  6. H.W. Walton, Mathematical Modeling of the Carburising Process for Microprocessor Control,Heat Treat. Met., 1983,10(1), p 23–26

    Google Scholar 

  7. E.L. Gyulikhandanov and A.D. Khaidorov, Carburizing Low-Carbon Heat-Resistant Steels Containing Molybdenum and Titanium,Met. Sci. Heat Treat., 1991,33(5–6), p 344–348

    Article  Google Scholar 

  8. M. Yan, Z. Liu, and G. Zu, The Mathematical Model of Surface Carbon Concentration Growth during Gas Carburization,Mater. Sci. Prog., 1992,6(3), p 223–225 (in Chinese)

    Google Scholar 

  9. T. Turpin, J. Dulcy, and M. Gantois, Carbon Diffusion and Phase Transformations during Gas Carburizing of High-Alloyed Stainless Steels: Experimental Study and Theoretical Modeling,Metall. Trans. A, 2005,36(10), p 2751–2760

    Article  Google Scholar 

  10. A. Ruck, D. Monceau, and H.J. Grabke, Effects of Tramp Elements Cu, P, Pb, Sb and Sn on the Kinetics of Carburization of Case Hardening Steels,Steel Res., 1996,67(6), p 240–246

    Google Scholar 

  11. R. Collin, S. Gunnarson, and D. Thulin, Mathematical Model for Predicting Carbon Concentration Profiles of Gas-Carburized Steel,J. Iron Steel Inst., 1972,210, p 785–789

    Google Scholar 

  12. R.P. Smith, The Diffusivity of Carbon in Iron by Steady-State Method,Acta Metal., 1953,1, p 578–587

    Article  Google Scholar 

  13. S.K. Bose and H.J. Grabke, Diffusion Coefficient of Carbon in Fe-Ni Austenite in the Temperature Range 950–1100 Degree C,Z. Metallkd., 1978,69(1), p 8–15

    Google Scholar 

  14. S.K. Roy, H.J. Grabke, and W. Wepner, Diffusivity of Carbon in Austenitic Fe-Si-C Alloys,Arch. Eisenhuett., 1980,51(3), p 91–96

    Google Scholar 

  15. C. Matano, On the Relation Between the Diffusion-Coefficients and Concentrations of Solid Metals,Jpn. J. Phys., 1933,8(3), p 109–113

    Google Scholar 

  16. M.A. Dayananda, Atomic Mobilities in Multicomponent Diffusion and Their Determination,Trans. AIME, 1968,242, p 1369–1372

    Google Scholar 

  17. M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples,Metall. Trans. A, 1979,10(9), p 1333–1339

    Google Scholar 

  18. P.T. Carlson, M.A. Dayananda, and R.E. Grace, Diffusion in Ternary Ag-Zn-Cd Solid Solutions,Metall. Trans. A, 1972,3(4), p 819–826

    Article  Google Scholar 

  19. A.L. Hurley and M.A. Dayananda, Multiphase Diffusion in Ag-Zn Alloys,Metall. Trans. A, 1970,1(1), p 139–143

    Google Scholar 

  20. N.R. Iorio, M.A. Dayananda, and R.E. Grace, Intrinsic Diffusion and Vacancy Wind Effects in Ag-Cd Alloys,Metall. Trans. A, 1973,4(5), p 1339–1346

    Article  Google Scholar 

  21. G.H. Cheng, M.A. Dayananda, and R.E. Grace, Diffusion Studies in Ag-Zn Alloys,Metall. Trans. A, 1975,6(1), p 21–27

    Article  Google Scholar 

  22. J. Dulcy, P. Bilger, D. Zimmermann, and M. Gantois, Characterization and Optimization of a Carburizing Treatment in Gas Phase: Definition of a New Process,Metall. Ital., 1999,91(4), p 39–44

    Google Scholar 

  23. W.H. McAdams,Heat Transmission, New York, McGraw-Hill, 1954, p 43–50

    Google Scholar 

  24. B. Million, K. Bacilek, J. Kucera, P. Michalicka, and A. Rek, Carbon Diffusion and Thermodynamic Characteristics in Chromium Steels,Z. Metllkd., 1995,86(10), p 706–712 (Materials Research and Advanced Techniques)

    Google Scholar 

  25. J. Kucera and K. Stransky, The Dependence of Carbon Diffusion Coefficients in Austenitic Ternary Alloys on Concentration of Additive Elements,Acta Tech. CSAV, 2003,48(4), p 353–364 (Ceskoslovensk Akademie Ved)

    Google Scholar 

  26. R.P. Smith, The Diffusivity of Carbon in γ-Fe-Co Alloys,Trans. AIME, 1964,230, p 476–480

    Google Scholar 

  27. M.M. Thete, Simulation of Gas Carburising: Development of Computer Program with Systematic Analyses of Process Variables Involved,Surf. Eng., 2003,19(3), p 217–228

    Article  Google Scholar 

  28. G.G. Tibbetts, Diffusivity of Carbon in Iron and Steels at High Temperatures,J. Appl. Phys., 1980,51(9), p 4813–4816

    Article  ADS  Google Scholar 

  29. J.I. Goldstein and A.E. Moren, Diffusion Modeling of the Carburization Process,Metall. Trans. A, 1978,9(11), p 1515–1525

    Article  Google Scholar 

  30. G.E. Totten and M.A.H. Howes,Steel Heat Treatment Handbook, Marcel Dekker, Inc., New York, 1997

    Google Scholar 

  31. L. Sproge and J. Agren, Experimental and Theoretical Studies of Gas Consumption in the Gas Carburizing Process,J. Heat Treat., 1988,6, p 9–19

    Google Scholar 

  32. J. Agren, Revised Expression for the Diffusivity of Carbon in Binary Fe-C Austenite,Scripta Metall., 1986,20(11), p 1507–1510

    Article  Google Scholar 

  33. R.M. Asimow, Analysis of the Variation of the Diffusion Constant of Carbon in Austenite with Concentration,Trans. AIME, 1964,230(3), p 611–613

    Google Scholar 

  34. J. Crank,The Mathematics of Diffusion, 1st ed., Oxford, UK, Clarendon Press, 1956, p 42–62

    MATH  Google Scholar 

  35. K.E. Rimmer, E. Schwarz-Bergkampf, and J. Wunning, Surface Reaction Rate in Gas Carburizing,Haerterei-Technische Mitteilungen, 1975,30(3), p 152–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Karabelchtchikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabelchtchikova, O., Sisson, R.D. Carbon diffusion in steels: A numerical analysis based on direct integration of the flux. JPED 27, 598–604 (2006). https://doi.org/10.1007/BF02736561

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736561

Keywords

Navigation