Skip to main content
Log in

Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters (T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hillert: in Computer Modeling of Phase Diagrams, L.H. Bennett, ed., TMS-AIME, Warrendale, PA, 1986, pp. 1–17.

    Google Scholar 

  2. A. Borgenstam, A. Engström, L. Höglund, and J. Ågren: J. Phase Equilibria, 2000, vol. 21, pp. 269–80.

    Article  CAS  Google Scholar 

  3. N. Saunders and A.P. Miodownik: CALPHAD, Calculation of Phases Diagrams, A Comprehensive Guide, Pergamon Series, Pergamon Press, New York, NY, 1998.

    Google Scholar 

  4. L. Kaufman and H. Bernstein: Computer Calculations of Phase Diagrams, Academic Press, New York, 1970; also CALPHAD J.

    Google Scholar 

  5. A. Engström, L. Höglund, and J. Ågren: Mater. Sci. Forum, 1994, vols. 163–165, pp. 725–30.

    Article  Google Scholar 

  6. J. Ågren: Iron Steel Inst. Jpn. Int., 1994, vol. 32, pp. 291–96.

    Google Scholar 

  7. J.O. Andersson, L. Höglund, B. Jönsson, and J. Ågren: Fundamentals and Applications of Ternary Diffusion, G.R. Purdy, ed., Pergamon Press, New York, NY, 1990, pp. 153–63.

    Google Scholar 

  8. J. Ågren: J. Phys. Chem. Solids, 1982, vol. 43, pp. 385–91.

    Article  Google Scholar 

  9. T. Helander and J. Ågren: Metall. Trans. A, 1997, vol. 28A, pp. 303–08.

    CAS  Google Scholar 

  10. Z.I. Liu, L. Höglund, B. Jönsson, and J. Ågren: Metall. Trans. A, 1991, vol. 22A, pp. 1745–52.

    CAS  Google Scholar 

  11. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, The Institute of Metals, London, 1987, pp. 150–70.

    Google Scholar 

  12. J. Ågren: Current Opinion in Solid State & Materials Science, 1996, vol. 1, pp. 355–60.

    Article  Google Scholar 

  13. B. Sundman: Scand. J. Metall., 1991, vol. 20, pp. 79–85.

    CAS  Google Scholar 

  14. B. Jansson, B. Jönsson, Bo. Sundman, and J. Ågren: Thermochimica Acta, 1993, vol. 214, pp. 93–96.

    Article  CAS  Google Scholar 

  15. TCFE2000 Solution Database, provided by Thermo-Calc AB, Royal Institute of Technology, Stockholm, 2000.

  16. Bo. Sundman, and J. Ågren: J. Phys. Chem. Solids, 1981, vol. 42, pp. 297–301.

    Article  CAS  Google Scholar 

  17. P. Franke and G. Inden: Z. Metallkd., 1997, vol. 88, pp. 795–99.

    CAS  Google Scholar 

  18. A. Engström, J.E. Morral, and J. Ågren: Acta Mater., 1997, vol. 45, pp. 1189–99.

    Article  Google Scholar 

  19. A. Engström, L. Höglund, and J. Ågren: Metall. Trans. A, 1994, vol. 25A, pp. 1127–34.

    Google Scholar 

  20. L. Onsager: Phys. Rev., 1931, vol. 37, pp. 405–25; vol. 38, pp. 2265–79.

    Article  CAS  Google Scholar 

  21. J.O. Andersson and J. ågren: J. Appl. Phys., 1992, vol. 72, pp. 1350–55.

    Article  CAS  Google Scholar 

  22. MOB2 Mobility Database, A. Engström, ed., Thermo-Calc AB, Royal Institute of Technology, Stockholm, 1998; also info@Thermo-Calc.se

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turpin, T., Dulcy, J. & Gantois, M. Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling. Metall Mater Trans A 36, 2751–2760 (2005). https://doi.org/10.1007/s11661-005-0271-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0271-4

Keywords

Navigation