Skip to main content
Log in

Numerical Modeling of Diffusion-Based Peritectic Solidification in Iron Carbon System and Experimental Validation

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Continuous casting of high-strength steels is challenging owing to peritectic phase transformation during solidification. This transformation is reported to be either diffusion controlled or “massive” like. The experimental evidence suggests that constant thermal gradients lead to diffusion-controlled phenomena, whereas the concentric solidification technique induces massive transformation. Diffusion-controlled peritectic solidification is more desirable during continuous casting to ensure a suitable cast quality compared with massive transformation. Accordingly, the authors demonstrate a general one-dimensional numerical modeling of the solidification process in steel by incorporating a diffusion-controlled peritectic phase transformation. The model is dynamically linked with the FactSage thermodynamic database through ChemAppV 7.1.4 library for input of accurate thermodynamic data. The modeling details are presented for a binary Fe-C system, and the results are compared with the experimental data available in the literature. The growth and dissolution of phases are accurately predicted as a function of composition and cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.G. Lee, S. Kim, B. Song, and S. Lee, Met. Mater. Int. 8, 435 (2002).

    Article  Google Scholar 

  2. O. Matsumura, Y. Sakuma, and H. Takechi, ISIJ Int. 32, 1014 (1992).

    Article  Google Scholar 

  3. Z. Li and D. Wu, ISIJ Int. 46, 121 (2006).

    Article  Google Scholar 

  4. T. Saeki, S. Ooguchi, S. Mizoguchi, T. Yamamoto, H. Misumi, and A. Tsuneoka, Tetsu-to-Hagané 68, 1773 (1982).

    Article  Google Scholar 

  5. S. Moon, The peritectic phase transition and continuous casting practice (Doctor of Philosophy thesis, Faculty of Engineering and Information Sciences, University of Wollongong, 2015). https://ro.uow.edu.au/theses/4350.

  6. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka, Metall. Trans. B 17, 845 (1986).

    Article  Google Scholar 

  7. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka, Trans. Iron Steel Inst. Jpn. 24, 873 (1984).

    Article  Google Scholar 

  8. Y.J. Choi, Non-Equilibrium Solidification of δ-TRIP Steel (Pohang: Pohang University of Science and Technology, 2011).

    Google Scholar 

  9. H.M. Lee, J.S. Bae, J.R. Soh, S.K. Kim, and Y.D. Lee, Mater. Trans. JIM 39, 633 (1998).

    Article  Google Scholar 

  10. K.S. Chuang and D. Reinisch, Met. Trans. A 6, 235 (1975).

    Article  Google Scholar 

  11. H. Shibata, Y. Arai, M. Suzuki, and T. Emi, Metall. Mater. Trans. B 31, 981 (2000).

    Article  Google Scholar 

  12. H. Yasuda, T. Nagira, M. Yoshiya, A. Sugiyama, N. Nakatsuka, M. Kiire, M. Uesugi, K. Uesugi, K. Umetani, and K. Kajiwara, IOP Conf. Ser. Mater. Sci. Eng. 33, 012036 (2012).

    Article  Google Scholar 

  13. S. Griesser, C. Bernhard, and R. Dippenaar, Acta Mater. 81, 111 (2014).

    Article  Google Scholar 

  14. Y.M. Won and B.G. Thomas, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 1755 (2001).

    Article  Google Scholar 

  15. H. Fredriksson and J. Stjerndahl, Met. Sci. 6, 575 (1982).

    Article  Google Scholar 

  16. L. Thuinet and H. Combeau, Comput. Mater. Sci. 45, 294 (2009).

    Article  Google Scholar 

  17. L. Thuinet and H. Combeau, Comput. Mater. Sci. 45, 285 (2009).

    Article  Google Scholar 

  18. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).

    Article  Google Scholar 

  19. M. Paliwal and I.H. Jung, J. Cryst. Growth 394, 28 (2014).

    Article  Google Scholar 

  20. M. Paliwal, D.H. Kang, E. Essadiqi, and I.H. Jung, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 3596 (2014).

    Article  Google Scholar 

  21. M. Paliwal and I.H. Jung, Acta Mater. 61, 4848 (2013).

    Article  Google Scholar 

  22. M. Paliwal, D.H. Kang, E. Essadiqi, and I.H. Jung, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 3308 (2014).

    Article  Google Scholar 

  23. http://gtt.mch.rwth-aachen.de/gtt-web/chemapp

  24. D.M. Stefanescu, ISIJ Int. 46, 786 (2006).

    Article  Google Scholar 

  25. S. Arrhenius, Zeitschrift Für Phys. Chemie 4, 226 (1889).

    Google Scholar 

  26. H.G. Landau, Q. Appl. Math. 8, 81 (1950).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Paliwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, I.M.M., Kumar, N. & Paliwal, M. Numerical Modeling of Diffusion-Based Peritectic Solidification in Iron Carbon System and Experimental Validation. JOM 71, 2780–2790 (2019). https://doi.org/10.1007/s11837-019-03442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03442-7

Navigation