Antonie van Leeuwenhoek

, Volume 111, Issue 7, pp 1055–1064 | Cite as

Mixed cropping regimes promote the soil fungal community under zero tillage

  • L. B. Silvestro
  • F. Biganzoli
  • S. A. Stenglein
  • H. Forjan
  • L. Manso
  • M. V. MorenoEmail author
Original Paper


Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0–5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.


Soil Cropping regime Diversity Fungi DGGE 



We thank Prof. M. Oyarzabal for English assistance. This work was supported by funding from the PIP -CONICET 2014-2016 COD: 112-20130100280 and by the Individual Postdoctoral scholarship of CONICET.

Author contributions

LB Silvestro designed and performed the experiments, analysed and interpreted the data, and wrote the manuscript. F Biganzoli analysed and interpreted the data and wrote the manuscript. Stenglein SA, H Forjan and L Manso supplied material and wrote the manuscript. MV Moreno designed the experiments, interpreted the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interest

The authors declare no competing financial interests.

Supplementary material

10482_2017_1005_MOESM1_ESM.docx (64 kb)
Supplementary material 1 (DOCX 64 kb)


  1. Anderson IC, Collin C, Prosser JL (2003) Potencial bies of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primer for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47CrossRefPubMedGoogle Scholar
  2. Aon MA, Cabello MN, Serena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa SI (2001) I Spatio-temporal patterns of soil microbial and enzymatic acivities in an agricultural soil. Appl Soil Ecol 18:239–254CrossRefGoogle Scholar
  3. Barbaruah B, Chutia M, Boruah P (2012) Soil hyphomycetes population dynamics in disturbed and undisturbed tropical soils of North eastern India. Afr J Microbiol Res 6:5344–5352CrossRefGoogle Scholar
  4. Bassam B, Caetano-Anolles G, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrilamide gels. Anal Biochem 196:80–83CrossRefPubMedGoogle Scholar
  5. Cabello M, Aon M, Velázquez S (2003) Diversity, structure and evolution of fungal communities in soils under different agricultural management practices. Bol Soc Argent Bot 38:225–232Google Scholar
  6. Cabello M, Arambarri AM (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res 157:115–125CrossRefPubMedGoogle Scholar
  7. Carmichael JW, Bryce Kendrick W, Conners IL, Sigler L (1980) Genera of Hyphomycetes. The University of Alberta, Edmonton, AlbertaGoogle Scholar
  8. Derpsch R, Friedrich T, Kassam A, Li Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–26Google Scholar
  9. Domínguez GF, Diovisalvi GA, Studdert GA, Monterubbianesi MG (2009) Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil Tillage Res. 102:93–100CrossRefGoogle Scholar
  10. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil Fungi, vol 1. Academic Press, LondonGoogle Scholar
  11. Dufrené MY, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical. Approach Ecol Monogr 67:345–366Google Scholar
  12. Ellis MB (1971) Dematiaceous, Hyphomycetes edn. Commonwealth Mycological Institute, Kew, Surrey, EnglandGoogle Scholar
  13. Esmaelli Ellouze WL, Taheri A, Bainard LD, Yang CH, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel CH (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed Res Int. CrossRefGoogle Scholar
  14. Fracetto GGM, Azevedo LCB, Fracetto FJC, Andreote FD, Lambais MR, Pfenning LH (2013) Impact of Amazon land use on the community of soil fungi. Sci Agric 70:59–67CrossRefGoogle Scholar
  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basiodiomycetes-aplication to the identification of mycorrhizae and rust. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  16. González-Chávez MC, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293CrossRefGoogle Scholar
  17. Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F (2017) The Effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol 902:1–22Google Scholar
  18. Hagn A, Karin Pritsch, Schloter J, Munch JC (2003) Fungal diversity in agricultural soil under different farming managment systems, with special reference to biocontrol strains of Trichodermaspp. Biol Fertil Soils 30:236–244CrossRefGoogle Scholar
  19. Jost L (2006) Entropy and diversity. Opinion. Oikos 113:363–375CrossRefGoogle Scholar
  20. Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol 86:158–164CrossRefGoogle Scholar
  21. Kubicek CH, Harman GE (2002) Trichoderma & Gliocladium. Volume 1. Basic biology, taxonomy and genetics. Taylor & Francis, Washinton, DCGoogle Scholar
  22. Larena I, Sabuquillo P, Melgarejo P, De Cal A (2003) Biocontrol of fusarium and verticillium wilt of tomato by Penicillium oxalicum. J. Phytophatol 151:507–512CrossRefGoogle Scholar
  23. LeBlanc N, Kinkel LL, Kistler HC (2015) Soil fungal communities respond to grasslan plant communityrichness and soil edaphics. Microbial Ecol 70:188–195CrossRefGoogle Scholar
  24. Lenth RV (2013) lsmeans: Least-squares means. R package version 1.10-2.
  25. Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual, 1st edn. Blackwell, Oxford, UKCrossRefGoogle Scholar
  26. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem 30:1733–1741CrossRefGoogle Scholar
  27. Magurran AE, McGill BJ (2011) Biological diversity. Frontiers in measurement and assessment. Oxford University, OxfordGoogle Scholar
  28. Mamgain A, Roychowdhury R, Tah J (2013) Alternaria pathogenicity and its strategic controls. Res J Biol 1:2–9Google Scholar
  29. Manamgoda DS, Cai L, Bahkali HA, Chukeatirote E, Hyde K (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51:3–42CrossRefGoogle Scholar
  30. Manshor N, Rosli H, Ismail NA, Salleh B, Zakaria L (2012) Diversity of Fusarium Species from Highland Areas in Malaysia. Trop Life Sci Res 23:1–15PubMedPubMedCentralGoogle Scholar
  31. Marasas WFO, Burgess LW, Anelich RY, Lamprecht SC, Van Schalkwyk DJ (1988) Survey of Fusarium species associated with plant debris in South African soils. S Afr J Bot 54:63–71CrossRefGoogle Scholar
  32. McCune B, Meffors MJ (1999) Multivariate analysis of ecologial data. version 4.0. MjM Software Design, Gleneden BeachGoogle Scholar
  33. Meriles JM, Vargas Gil S, Conforto C, Figoni G, Lovera E, March GJ, Guzmán CA (2009) Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res 103:271–281CrossRefGoogle Scholar
  34. Molnár O, Wuczkowski M, Prillinger H (2008) Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol Prog 7:111–123CrossRefGoogle Scholar
  35. Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) The R development core team. nlme: linear and nonlinear mixed effects models. R package version 3, 1–108Google Scholar
  36. Quesada-Moraga E, Navas-Corte JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966CrossRefPubMedGoogle Scholar
  37. Ramakrishnai N, Lacey J, Smitw JE (1993) Effects of water activity and temperature on the growth of fungi interacting on barley grain. Mycol Res 97:1393–1402CrossRefGoogle Scholar
  38. Raper KB, Fennel D (1965) The genus Aspergillus. The Williams & Wilkins company, PhiladelphiaGoogle Scholar
  39. Raper T, Thom Ch (1968) A manual of the Penicillia. Hafner Publishing Company, New York and LondonGoogle Scholar
  40. Rohlf FI (1998) Ntsys-pc. Numerical taxonomy and multivariate analysis system, version 2.0. Applied biostatistics. Exeter Software, New YorkGoogle Scholar
  41. Sahni N, Phutela UG (2013) Effect of thermophilic fungus Humicola fuscoatra MTCC 1409 on paddy straw digestibility and biogas production. Microbiology 2:357–359Google Scholar
  42. Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Studies in Mycology, vol 49. Ceentraal Bureau Voor Schimmelcultures, Utrecht, The Netherlands, pp 1–251Google Scholar
  43. Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecología 139:98–107CrossRefPubMedGoogle Scholar
  44. Sigler WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21:107–118CrossRefGoogle Scholar
  45. Silvestro LB, Biganzoli F, Forjan H, Albanesi A, Arambarri AM, Manso L, Moreno MV (2017) Mollisol: Biological Characterization under Zero Tillage with Different Crops Sequences. J Agr Sci Tech 19:245–257Google Scholar
  46. Silvestro LB, Stenglein SA, Forjan H, Dinolfo MI, Arambarri AM, Manso L, Moreno MV (2013) Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage. Span J Agric. Res 11:72–79CrossRefGoogle Scholar
  47. Smith E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ. Microb 65:2614–2621Google Scholar
  48. Sneath PH, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  49. Soil Survey Staff (SSS) ((2014) Keys to soil taxonomy, vol 12th edn. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DCGoogle Scholar
  50. USDA (2006) The U.S. Department of Agriculture: Keys to soil taxonomy, 10th edn. EEUUGoogle Scholar
  51. Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA (2014a) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 78:63–139CrossRefPubMedPubMedCentralGoogle Scholar
  52. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014b) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371CrossRefPubMedPubMedCentralGoogle Scholar
  53. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  54. Wiedow D, Baum Ch, Leinweber P (2007) Inoculation with Trichoderma saturnisporum accelerates wheat straw decomposition on soil. Arch Agron Soil Sci 53:1–12CrossRefGoogle Scholar
  55. Yassin MA, El-Samawaty AR, Bahkali A, Moslem M, Abd-Elsalam KA, Hyde KD (2010) Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers 44:45–52CrossRefGoogle Scholar
  56. Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • L. B. Silvestro
    • 1
    • 2
  • F. Biganzoli
    • 3
  • S. A. Stenglein
    • 1
    • 4
  • H. Forjan
    • 5
  • L. Manso
    • 5
  • M. V. Moreno
    • 1
    • 4
    Email author
  1. 1.Laboratorio de Biología Funcional Y Biotecnología (BIOLAB)UNCPBA-CICBA, INBIOTEC-CONICET. Av. República de Italia 780AzulArgentina
  2. 2.Area Química, FAA, UNCPBAAzulArgentina
  3. 3.Departamento de Métodos Cuantitativos Y Sistemas de Información, Facultad de AgronomíaU. B. A.Buenos AiresArgentina
  4. 4.Area Microbiología, FAA, UNCPBAAzulArgentina
  5. 5.Estación Experimental Barrow-INTATres ArroyosArgentina

Personalised recommendations