Skip to main content
Log in

Mixed cropping regimes promote the soil fungal community under zero tillage

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0–5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson IC, Collin C, Prosser JL (2003) Potencial bies of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primer for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cabello MN, Serena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa SI (2001) I Spatio-temporal patterns of soil microbial and enzymatic acivities in an agricultural soil. Appl Soil Ecol 18:239–254

    Article  Google Scholar 

  • Barbaruah B, Chutia M, Boruah P (2012) Soil hyphomycetes population dynamics in disturbed and undisturbed tropical soils of North eastern India. Afr J Microbiol Res 6:5344–5352

    Article  Google Scholar 

  • Bassam B, Caetano-Anolles G, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrilamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Cabello M, Aon M, Velázquez S (2003) Diversity, structure and evolution of fungal communities in soils under different agricultural management practices. Bol Soc Argent Bot 38:225–232

    Google Scholar 

  • Cabello M, Arambarri AM (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res 157:115–125

    Article  PubMed  Google Scholar 

  • Carmichael JW, Bryce Kendrick W, Conners IL, Sigler L (1980) Genera of Hyphomycetes. The University of Alberta, Edmonton, Alberta

    Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Li Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–26

    Google Scholar 

  • Domínguez GF, Diovisalvi GA, Studdert GA, Monterubbianesi MG (2009) Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil Tillage Res. 102:93–100

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil Fungi, vol 1. Academic Press, London

    Google Scholar 

  • Dufrené MY, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical. Approach Ecol Monogr 67:345–366

    Google Scholar 

  • Ellis MB (1971) Dematiaceous, Hyphomycetes edn. Commonwealth Mycological Institute, Kew, Surrey, England

    Google Scholar 

  • Esmaelli Ellouze WL, Taheri A, Bainard LD, Yang CH, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel CH (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed Res Int. https://doi.org/10.1155/2014/531824

    Article  Google Scholar 

  • Fracetto GGM, Azevedo LCB, Fracetto FJC, Andreote FD, Lambais MR, Pfenning LH (2013) Impact of Amazon land use on the community of soil fungi. Sci Agric 70:59–67

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basiodiomycetes-aplication to the identification of mycorrhizae and rust. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • González-Chávez MC, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293

    Article  Google Scholar 

  • Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F (2017) The Effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol 902:1–22

    Google Scholar 

  • Hagn A, Karin Pritsch, Schloter J, Munch JC (2003) Fungal diversity in agricultural soil under different farming managment systems, with special reference to biocontrol strains of Trichodermaspp. Biol Fertil Soils 30:236–244

    Article  CAS  Google Scholar 

  • Jost L (2006) Entropy and diversity. Opinion. Oikos 113:363–375

    Article  Google Scholar 

  • Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol 86:158–164

    Article  Google Scholar 

  • Kubicek CH, Harman GE (2002) Trichoderma & Gliocladium. Volume 1. Basic biology, taxonomy and genetics. Taylor & Francis, Washinton, DC

    Google Scholar 

  • Larena I, Sabuquillo P, Melgarejo P, De Cal A (2003) Biocontrol of fusarium and verticillium wilt of tomato by Penicillium oxalicum. J. Phytophatol 151:507–512

    Article  Google Scholar 

  • LeBlanc N, Kinkel LL, Kistler HC (2015) Soil fungal communities respond to grasslan plant communityrichness and soil edaphics. Microbial Ecol 70:188–195

    Article  CAS  Google Scholar 

  • Lenth RV (2013) lsmeans: Least-squares means. R package version 1.10-2. http://CRAN.R-project.org/package=lsmeans.

  • Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual, 1st edn. Blackwell, Oxford, UK

    Book  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity. Frontiers in measurement and assessment. Oxford University, Oxford

    Google Scholar 

  • Mamgain A, Roychowdhury R, Tah J (2013) Alternaria pathogenicity and its strategic controls. Res J Biol 1:2–9

    Google Scholar 

  • Manamgoda DS, Cai L, Bahkali HA, Chukeatirote E, Hyde K (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51:3–42

    Article  Google Scholar 

  • Manshor N, Rosli H, Ismail NA, Salleh B, Zakaria L (2012) Diversity of Fusarium Species from Highland Areas in Malaysia. Trop Life Sci Res 23:1–15

    PubMed  PubMed Central  Google Scholar 

  • Marasas WFO, Burgess LW, Anelich RY, Lamprecht SC, Van Schalkwyk DJ (1988) Survey of Fusarium species associated with plant debris in South African soils. S Afr J Bot 54:63–71

    Article  Google Scholar 

  • McCune B, Meffors MJ (1999) Multivariate analysis of ecologial data. version 4.0. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Meriles JM, Vargas Gil S, Conforto C, Figoni G, Lovera E, March GJ, Guzmán CA (2009) Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res 103:271–281

    Article  Google Scholar 

  • Molnár O, Wuczkowski M, Prillinger H (2008) Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol Prog 7:111–123

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) The R development core team. nlme: linear and nonlinear mixed effects models. R package version 3, 1–108

  • Quesada-Moraga E, Navas-Corte JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966

    Article  PubMed  Google Scholar 

  • Ramakrishnai N, Lacey J, Smitw JE (1993) Effects of water activity and temperature on the growth of fungi interacting on barley grain. Mycol Res 97:1393–1402

    Article  Google Scholar 

  • Raper KB, Fennel D (1965) The genus Aspergillus. The Williams & Wilkins company, Philadelphia

    Google Scholar 

  • Raper T, Thom Ch (1968) A manual of the Penicillia. Hafner Publishing Company, New York and London

    Google Scholar 

  • Rohlf FI (1998) Ntsys-pc. Numerical taxonomy and multivariate analysis system, version 2.0. Applied biostatistics. Exeter Software, New York

  • Sahni N, Phutela UG (2013) Effect of thermophilic fungus Humicola fuscoatra MTCC 1409 on paddy straw digestibility and biogas production. Microbiology 2:357–359

    Google Scholar 

  • Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Studies in Mycology, vol 49. Ceentraal Bureau Voor Schimmelcultures, Utrecht, The Netherlands, pp 1–251

    Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecología 139:98–107

    Article  PubMed  Google Scholar 

  • Sigler WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21:107–118

    Article  Google Scholar 

  • Silvestro LB, Biganzoli F, Forjan H, Albanesi A, Arambarri AM, Manso L, Moreno MV (2017) Mollisol: Biological Characterization under Zero Tillage with Different Crops Sequences. J Agr Sci Tech 19:245–257

    Google Scholar 

  • Silvestro LB, Stenglein SA, Forjan H, Dinolfo MI, Arambarri AM, Manso L, Moreno MV (2013) Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage. Span J Agric. Res 11:72–79

    Article  Google Scholar 

  • Smith E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ. Microb 65:2614–2621

    Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Soil Survey Staff (SSS) ((2014) Keys to soil taxonomy, vol 12th edn. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • USDA (2006) The U.S. Department of Agriculture: Keys to soil taxonomy, 10th edn. EEUU

  • Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA (2014a) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 78:63–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014b) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

  • Wiedow D, Baum Ch, Leinweber P (2007) Inoculation with Trichoderma saturnisporum accelerates wheat straw decomposition on soil. Arch Agron Soil Sci 53:1–12

    Article  CAS  Google Scholar 

  • Yassin MA, El-Samawaty AR, Bahkali A, Moslem M, Abd-Elsalam KA, Hyde KD (2010) Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers 44:45–52

    Article  Google Scholar 

  • Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Prof. M. Oyarzabal for English assistance. This work was supported by funding from the PIP -CONICET 2014-2016 COD: 112-20130100280 and by the Individual Postdoctoral scholarship of CONICET.

Author information

Authors and Affiliations

Authors

Contributions

LB Silvestro designed and performed the experiments, analysed and interpreted the data, and wrote the manuscript. F Biganzoli analysed and interpreted the data and wrote the manuscript. Stenglein SA, H Forjan and L Manso supplied material and wrote the manuscript. MV Moreno designed the experiments, interpreted the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. V. Moreno.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

This manuscript is in memoriam of Dra. Arambarri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestro, L.B., Biganzoli, F., Stenglein, S.A. et al. Mixed cropping regimes promote the soil fungal community under zero tillage. Antonie van Leeuwenhoek 111, 1055–1064 (2018). https://doi.org/10.1007/s10482-017-1005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-1005-5

Keywords

Navigation