Microchimica Acta

, Volume 184, Issue 5, pp 1267–1283 | Cite as

A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells

  • Hongying Liu
  • Lingyan Weng
  • Chi Yang
Review Article


The incorporation of nanomaterials into electrochemical sensors is an attractive approach towards the improvement of the sensitivity of amperometry and also can provide improved sensor selectivity and stability. This review (with 137 references) details the current state of the art and new trends in nanomaterial-based electrochemical sensing of hydrogen peroxide (H2O2), hydrogen sulfide (H2S) and nitric oxide (NO) in cells or released by cells. The article starts with a discussion of the significance of the three analytes, and this is followed by three sections that summarize the electrochemical detection schemes for H2O2, H2S and NO. Each section first summarizes the respective physiological roles, and then reviews electrochemical sensors based on the use of carbon nanomaterials, noble metal nanomaterials, metal oxide nanomaterials, and layered doubled hydroxides. The materials are compiled in three tables along with figures of merit for the various sensors.

Graphical abstract

Nanomaterial-based electrochemical sensors for Reactive oxygen species (H2O2), Reactive nitrogen species (NO) and Reactive hydrogen sulfide species (H2S) inside cells or released by cells.


Cellular signalling Cellular stress Amperometry Carbon nanomaterial Noble metal nanoparticles Metal oxide nanoparticles Layered double hydroxide Reactive oxygen species Reactive nitrogen species Reactive hydrogen sulfide species 



This work was financially supported by the National Natural Science Foundation of China (61404075, and 21405029), China Postdoctoral Science Foundation funded project (No.2016 M601694), Jiangsu Planned Projects for Postdoctoral Research Funds (No.1601090B), Science and Technology Program of Zhejiang Province of China (2016C37042), Young Talent Cultivation Project of Zhejiang Association for Science and Technology (2016YCGC007), and the social development project of Hangzhou (20160533B70). The authors extend their appreciation to Prof. Otto S. Wolfbeis for his help.

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Bedioui F, Griveau S (2014) Electrochemical detection of nitrite oxide: assessement of twenty years of strategies. Electroanalysis 26:1277–1286CrossRefGoogle Scholar
  2. 2.
    Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29:539–549. doi: 10.1007/s10059-010-0082-3 CrossRefGoogle Scholar
  3. 3.
    Yagati AK, Choi J (2014) Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics. Electroanalysis 26:1259–1276. doi: 10.1002/elan.201400037 CrossRefGoogle Scholar
  4. 4.
    Li J, Yin C, Huo F (2015) Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009. RSC Adv 5:2191–2206. doi: 10.1039/C4RA11870G CrossRefGoogle Scholar
  5. 5.
    Lippert AR (2014) Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. J Inorg Biochem 133:136–142. doi: 10.1016/j.jinorgbio.2013.10.010 CrossRefGoogle Scholar
  6. 6.
    Taha ZH (2003) Nitric oxide measurements in biological samples. Talanta 61:3–10. doi: 10.1016/S0039-9140(03)00354-0 CrossRefGoogle Scholar
  7. 7.
    Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22. doi: 10.1007/s00604-013-1069-5 CrossRefGoogle Scholar
  8. 8.
    Bai J, Jiang X (2013) A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal Chem 85:8095–8101. doi: 10.1021/ac400659u CrossRefGoogle Scholar
  9. 9.
    Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. doi: 10.1021/cr300115g CrossRefGoogle Scholar
  10. 10.
    Moriguchi K, Ohno N, Ogawa T, Hirai K (1999) Highly specific detection of H2O2-dependent luminol chemiluminescence in stimulated human leukocytes using polyvinyl films. J Electron Microsc 48:177–179. doi: 10.1093/oxfordjournals.jmicro.a023665 CrossRefGoogle Scholar
  11. 11.
    Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57:3043–3055. doi: 10.1093/jxb/erl070 CrossRefGoogle Scholar
  12. 12.
    Yao D, Vlessidis AG, Evmiridis NP (2004) Determination of nitric oxide in biological samples. Microchim Acta 147:1–20. doi: 10.1007/s00604-004-0212-8 CrossRefGoogle Scholar
  13. 13.
    Wang Y, Li S, Feng L, Nie C, Liu L, Lv F, Wang S (2015) Fluorescence ratiometric assay strategy for chemical transmitter of living cells using H2O2-sensitive conjugated polymers. ACS Appl Mater Interfaces 7:24110–24118. doi: 10.1021/acsami.5b07172 CrossRefGoogle Scholar
  14. 14.
    Wang B, Li P, Yu F, Song P, Sun X, Yang S, Lou Z, Han K (2013) A reversible fluorescence probe based on se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem Commun 49:1014–1016. doi: 10.1039/C2CC37803E CrossRefGoogle Scholar
  15. 15.
    Kirejev V, Kandoth N, Gref R, Ericson MB, Sortino S (2014) A polymer-based nanodevice for the photoregulated release of NO with two-photon fluorescence reporting in skin carcinoma cells. J Mater Chem B 2:1190–1195. doi: 10.1039/c3tb21414a CrossRefGoogle Scholar
  16. 16.
    Xu T, Scafa N, Xu L, Su L, Li C, Zhou S, Liu Y, Zhang X (2014) Electrochemical sensors for nitric oxide detection in biological applications. Electroanalysis 26:449–468. doi: 10.1002/elan.201300564 CrossRefGoogle Scholar
  17. 17.
    Bedioui F, Griveau S (2013) Electrochemical detection of nitric oxide: assessement of twenty years of strategies. Electroanalysis 25:587–600. doi: 10.1002/elan.201200306 CrossRefGoogle Scholar
  18. 18.
    Griveau S, Bedioui F (2013) Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Anal Bioanal Chem 405:3475–3488. doi: 10.1007/s00216-012-6671-6 CrossRefGoogle Scholar
  19. 19.
    María-Hormigos R, Gismera MJ, Sevilla MT (2015) Straightforward ultrasound-assisted synthesis of bismuth oxide particles with enhanced performance for electrochemical sensors development. Mater Lett 158:359–362. doi: 10.1016/j.matlet.2015.05.165 CrossRefGoogle Scholar
  20. 20.
    Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402. doi: 10.1016/j.electacta.2015.02.116 CrossRefGoogle Scholar
  21. 21.
    Aung NN, Crowe E, Liu X (2015) Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant. ISA Trans 55:188–194. doi: 10.1016/j.isatra.2014.09.003 CrossRefGoogle Scholar
  22. 22.
    Bathany C, Han JR, Abi-Samra K, Takayama S, Cho YK (2015) An electrochemical-sensor system for real-time flow measurements in porous materials. Biosens Bioelectron 70:115–121. doi: 10.1016/j.bios.2015.03.002 CrossRefGoogle Scholar
  23. 23.
    de Oliveira Farias EA, dos Santos MC, de Araujo DN, Quelemes PV, de Souza Almeida Leite JR, Eaton P, da Silva DA, Eiras C (2015) Layer-by-layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI. Mater Sci Eng B 200:9–21. doi: 10.1016/j.mseb.2015.05.004 CrossRefGoogle Scholar
  24. 24.
    Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883. doi: 10.1126/science.1130481 CrossRefGoogle Scholar
  25. 25.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. doi: 10.1038/nchembio.85 CrossRefGoogle Scholar
  26. 26.
    Wu P, Cai Z, Gao Y, Zhang H, Cai C (2011) Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chem Commun 47:11327–11329. doi: 10.1039/c1cc14419g CrossRefGoogle Scholar
  27. 27.
    Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664. doi: 10.1126/science.1156906 CrossRefGoogle Scholar
  28. 28.
    Douglass WC (2003) Hydrogen peroxide: medical miracle. Rhino Publishing, PanamaGoogle Scholar
  29. 29.
    Kasai N, Han C, Torimitsu K (2005) Hydrogen peroxide distribution and neuronal cell death in a rat hippocampal slice. Sensor Actuat B-Chem 108:746–750. doi: 10.1016/j.snb.2004.11.096 CrossRefGoogle Scholar
  30. 30.
    Liu X, Feng H, Zhang J, Zhao R, Liu X, Wong DK (2012) Hydrogen peroxide detection at a horseradish peroxidase biosensor with a au nanoparticle-dotted titanate nanotube|hydrophobic ionic liquid scaffold. Biosens Bioelectron 32:188–194. doi: 10.1016/j.bios.2011.12.002 CrossRefGoogle Scholar
  31. 31.
    Mathew M, Sandhyarani N (2011) A novel electrochemical sensor surface for the detection of hydrogen peroxide using cyclic bisureas/gold nanoparticle composite. Biosens Bioelectron 28:210–215. doi: 10.1016/j.bios.2011.07.020 CrossRefGoogle Scholar
  32. 32.
    Peng Y, Jiang D, Su L, Zhang L, Yan M, Du J, Lu Y, Liu YN, Zhou F (2009) Mixed monolayers of ferrocenylalkanethiol and encapsulated horseradish peroxidase for sensitive and durable electrochemical detection of hydrogen peroxide. Anal Chem 81:9985–9992. doi: 10.1021/ac901833s CrossRefGoogle Scholar
  33. 33.
    Xi F, Liu L, Chen Z, Lin X (2009) One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta 78:1077–1082. doi: 10.1016/j.talanta.2009.01.023 CrossRefGoogle Scholar
  34. 34.
    Zhao J, Yan Y, Zhu L, Li X, Li G (2013) An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron 41:815–819. doi: 10.1016/j.bios.2012.10.019 CrossRefGoogle Scholar
  35. 35.
    Suárez G, Santschi C, Martin OJ, Slaveykova VI (2013) Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquatic cells. Biosens Bioelectron 42:385–390. doi: 10.1016/j.bios.2012. 10.083 CrossRefGoogle Scholar
  36. 36.
    Wu P, Cai Z, Chen J, Zhang H, Cai C (2011) Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids. Biosens Bioelectron 26:4012–4017. doi: 10.1016/j.bios.2011.03.018 CrossRefGoogle Scholar
  37. 37.
    Rui Q, Komori K, Tian Y, Liu H, Luo Y, Sakai Y (2010) Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta 670:57–62. doi: 10.1016/j.aca.2010.04.065 CrossRefGoogle Scholar
  38. 38.
    Li X, Liu Y, Zhu A, Luo Y, Deng Z, Tian Y (2010) Real-time electrochemical monitoring of cellular H2O2 integrated with in situ selective cultivation of living cells based on dual functional protein microarrays at au-TiO2 surfaces. Anal Chem 82:6512–6518. doi: 10.1021/ac100807c CrossRefGoogle Scholar
  39. 39.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705. doi: 10.1007/s00604-013-1098-0 CrossRefGoogle Scholar
  40. 40.
    Yao Z, Yang X, Wu F, Wu W, Wu F (2016) Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium (IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim Acta 183(10):2799–2806. doi: 10.1007/s00604-016-1924-2 CrossRefGoogle Scholar
  41. 41.
    MeiL ZP, Chen J, Chen D, Quan Y, Gu N, Cui R (2016) Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183(4):1359–1365. doi: 10.1007/s00604-016-1764-0 CrossRefGoogle Scholar
  42. 42.
    Wu Q, Sheng Q, Zheng J (2016) Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchim Acta 183(6):1943–1951. doi: 10.1007/s00604-016-1829-0
  43. 43.
    Yang Z, Qi C, Zheng X, Zheng J (2016) Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide. Microchim Acta 183(3):1131–1136. doi: 10.1007/s00604-016-1743-5 CrossRefGoogle Scholar
  44. 44.
    Shahid MM, Rameshkumar P, Huang NM (2016) A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Microchim Acta 183(2):911–916. doi: 10.1007/s00604-015-1679-1 CrossRefGoogle Scholar
  45. 45.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  46. 46.
    Rawson FJ, Hicks J, Dodd N, Abate W, Garrett DJ, Yip N, Fejer G, Downard AJ, Baronian KH, Jackson SK, Mendes PM (2015) Fast, ultrasensitive detection of reactive oxygen species using a carbon nanotube based-electrocatalytic intracellular sensor. ACS Appl Mater Interfaces 7:23527–23537. doi: 10.1021/acsami.5b06493 CrossRefGoogle Scholar
  47. 47.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  48. 48.
    Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424. doi: 10.1021/cr300335p CrossRefGoogle Scholar
  49. 49.
    Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25:2258–2268. doi: 10.1002/adma.201203700 CrossRefGoogle Scholar
  50. 50.
    Luo B, Liu S, Zhi L (2012) Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8:630–646. doi: 10.1002/smll.201101396 CrossRefGoogle Scholar
  51. 51.
    Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Accounts Chem Res 46:2211–2224. doi: 10.1021/ar300159f CrossRefGoogle Scholar
  52. 52.
    Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241. doi: 10.1002/adma.200904144 CrossRefGoogle Scholar
  53. 53.
    Kim J, Cote LJ, Huang J (2012) Two dimensional soft material: new faces of graphene oxide. Accounts Chem Res 45:1356–1364. doi: 10.1021/ar300047s CrossRefGoogle Scholar
  54. 54.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  55. 55.
    Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672. doi: 10.1039/c0cs00079e CrossRefGoogle Scholar
  56. 56.
    Shao Y, Wang J, Wu H, Liu J, Aksay I, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036. doi: 10.1002/elan.200900571 CrossRefGoogle Scholar
  57. 57.
    Zhu C, Dong S (2014) Energetic graphene-based electrochemical analytical devices in nucleic acid, protein and cancer diagnostics and detection. Electroanalysis 26:14–29. doi: 10.1002/elan.201300056 CrossRefGoogle Scholar
  58. 58.
    Yang G, Zhou Y, Wu J, Cao J, Li L, Liu H, Zhu J (2013) Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv 3:22597–22604. doi: 10.1039/c3ra44284e CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Bai X, Wang X, Shiu KK, Zhu Y, Jiang H (2014) Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86:9459–9465. doi: 10.1021/ac5009699 CrossRefGoogle Scholar
  60. 60.
    Fang H, Pan Y, Shan W, Guo M, Nie Z, Huang Y, Yao S (2014) Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites. Anal Methods 6:6073–6081. doi: 10.1039/C4AY00549J CrossRefGoogle Scholar
  61. 61.
    Kong L, Ren Z, Zheng N, Du S, Wu J, Tang J, Fu H (2015) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 8:469–480. doi: 10.1007/s12274-014-0617-6 CrossRefGoogle Scholar
  62. 62.
    Li X, Xu M, Chen H, Xu J (2015) Bimetallic Au@Pt@Au core–shell nanoparticles on graphene oxide nanosheets for high-performance H2O2 bi-directional sensing. J Mater Chem B 3:4355–4362. doi: 10.1039/c5tb00312a
  63. 63.
    Liu J, Bo X, Zhao Z, Guo L (2015) Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens Bioelectron 74:71–77. doi: 10.1016/j.bios.2015.06.042 CrossRefGoogle Scholar
  64. 64.
    Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, Xiao F (2015) High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta 853:200–206. doi: 10.1016/j.aca.2014.08.004 CrossRefGoogle Scholar
  65. 65.
    Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H (2012) Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater 22:2487–2494. doi: 10.1002/adfm.201200191 CrossRefGoogle Scholar
  66. 66.
    Wang L, Zhang Y, Cheng C, Liu X, Jiang H, Wang X (2015) Highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles. ACS Appl Mater Interfaces 7:18441–18449. doi: 10.1021/acsami.5b04553 CrossRefGoogle Scholar
  67. 67.
    Abdurhman AA, Zhang Y, Zhang G, Wang S (2015) Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Anal Bioanal Chem 407:8129–8136. doi: 10.1007/s00216-015-8989-3 CrossRefGoogle Scholar
  68. 68.
    Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6(16):13648–13656. doi: 10.1021/am503110s CrossRefGoogle Scholar
  69. 69.
    Sun Y, Zheng H, Wang C, Yang M, Zhou A, Duan H (2016) Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode. Nano 8:1523–1534. doi: 10.1039/c5nr06912b Google Scholar
  70. 70.
    Sun Y, He K, Zhang Z, Zhou A, Duan H (2015) Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron 68:358–364. doi: 10.1016/ j.bios.2015.01.017 CrossRefGoogle Scholar
  71. 71.
    Chang H, Wang X, Shiu KK, Zhu Y, Wang J, Li Q, Chen B, Jiang H (2013) Layer-by-layer assembly of graphene, au and poly(toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosens Bioelectron 41:789–794. doi: 10.1016/j.bios.2012.10.001 CrossRefGoogle Scholar
  72. 72.
    Xi F, Zhao D, Wang X, Chen P (2013) Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem Commun 26:81–84. doi: 10.1016/j.elecom.2012.10.017 CrossRefGoogle Scholar
  73. 73.
    Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730. doi: 10.1002/adma.200901285 Google Scholar
  74. 74.
    Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, Guo S, Zhang J (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nano 5:1816–1819. doi: 10.1039/c3nr33954h Google Scholar
  75. 75.
    Yang C, Hu L, Zhu H, Ling Y, Tao J, Xu C (2015) rGO quantum dots/ZnO hybrid nanofibers fabricated using electrospun polymer templates and applications in drug screening involving an intracellular H2O2 sensor. J Mater Chem B 3:2651–2659. doi: 10.1039/C4TB02134G CrossRefGoogle Scholar
  76. 76.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910. doi: 10.1021/ac5041555 CrossRefGoogle Scholar
  77. 77.
    Wang T, Peng Z, Wang Y, Tang J, Zheng G (2013) MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci Rep 3:2693–2701. doi: 10.1038/srep02693 Google Scholar
  78. 78.
    Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors-Basel 12:1657–1687. doi: 10.3390/s120201657 CrossRefGoogle Scholar
  79. 79.
    Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264. doi: 10.1016/j.nantod.2011.04.007 CrossRefGoogle Scholar
  80. 80.
    Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970. doi: 10.1039/c2cs15355f CrossRefGoogle Scholar
  81. 81.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 41:1578–1586. doi: 10.1021/ar7002804 CrossRefGoogle Scholar
  82. 82.
    Ai F, Chen H, Zhang SH, Liu SY, Wei F, Dong XY, Cheng JK, Huang WH (2009) Real-time monitoring of oxidative burst from single plant protoplasts using microelectrochemical sensors modified by platinum nanoparticles. Anal Chem 81:8453–8458. doi: 10.1021/ac901300b CrossRefGoogle Scholar
  83. 83.
    Xiao C, Liu YL, Xu JQ, Lv SW, Guo S, Huang WH (2015) Real-time monitoring of H2O2 release from single cells using nanoporous gold microelectrodes decorated with platinum nanoparticles. Analyst 140:3753–3758. doi: 10.1039/c4an02056a CrossRefGoogle Scholar
  84. 84.
    Liu F, Ge S, Yu J, Yan M, Song X (2014) Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells. Chem Commun 50:10315–10318. doi: 10.1039/c4cc04199b CrossRefGoogle Scholar
  85. 85.
    Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231. doi: 10.1002/cphc.200500113
  86. 86.
    Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet JM, Vallet-Regi M, Köller M, Epple M (2014) The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2:1634–1643. doi: 10.1039/c3tb21569e
  87. 87.
    Miao P, Wang B, Yin J, Chen X, Tang Y (2015) Electrochemical tracking hydrogen peroxide secretion in live cells based on autocatalytic oxidation reaction of silver nanoparticles. Electrochem Commun 53:37–40. doi: 10.1016/j.elecom.2015.02.007
  88. 88.
    Xia P, Liu H, Tian Y (2009) Cathodic detection of H2O2 based on nanopyramidal gold surface with enhanced electron transfer of myoglobin. Biosens Bioelectron 24:2470–2474. doi: 10.1016/j.bios.2008.12.029
  89. 89.
    Wang N, Han Y, Xu Y, Gao C, Cao X (2015) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87:457–463. doi: 10.1021/ac502682n
  90. 90.
    Han Y, Gao C, Zhu H, Chen S, Jiang Q, Li T, Willander M, Cao X, Wang N (2015) Piezotronic effect enhanced nanowire sensing of H2O2 released by cells. Nano Energ 13:405–413. doi: 10.1016/j.nanoen.2015.03.008
  91. 91.
    Xi J, Zhang Y, Wang N, Wang L, Zhang Z, Xiao F, Wang S (2015) Ultrafine Pd nanoparticles encapsulated in microporous Co3O4 hollow nanospheres for in situ molecular detection of living cells. ACS Appl Mater Interfaces 7:5583–5590. doi: 10.1021/acsami.5b00600
  92. 92.
    Sun X, Guo S, Liu Y, Sun S (2012) Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett 12:4859–4863. doi: 10.1021/nl302358e
  93. 93.
    Zhu H, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun S (2014) Core/Shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew Chem Int Edit 53:12508–12512. doi: 10.1002/anie.201406281
  94. 94.
    Li Z, Xin Y, Zhang Z (2015) New photocathodic analysis platform with quasi-core/shell-structured TiO2@Cu2O for sensitive detection of H2O2 release from living cells. Anal Chem 87:10491–10497. doi: 10.1021/acs.analchem.5b02644
  95. 95.
    An L, Huang L, Liu H, Xi P, Chen F, Du Y (2015) High-quality copper sulfide nanocrystals with diverse shapes and their catalysis for electrochemical reduction of H2O2. Part Part Syst Charact 32:536–541. doi: 10.1002/ppsc.201400209
  96. 96.
    Sajid M, Basheer C (2016) Layered double hydroxides: emerging sorbent materials for analytical extractions. TrAC, Trends Anal Chem 75:174–182. doi: 10.1016/j.trac.2015.06.010 CrossRefGoogle Scholar
  97. 97.
    Asif M, Aziz A, Dao AQ, Hakeem A, Wang H, Dong S, Zhang G, Xiao F, Liu H (2015) Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Anal Chim Acta 898:34–41. doi: 10.1016/j.aca.2015.09.053 CrossRefGoogle Scholar
  98. 98.
    Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071Google Scholar
  99. 99.
    Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896. doi: 10.1152/physrev.00017.2011 CrossRefGoogle Scholar
  100. 100.
    Malinskin T (2002) Encyclopedia of electrochemistry: bioelectrochemistry. Wiley-VCH and Publishing House, WeinheimGoogle Scholar
  101. 101.
    Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716. doi: 10.1111/j.1745-7254.2007.00629.x CrossRefGoogle Scholar
  102. 102.
    Jeroschewski P, Steuckart C, Kühl M (1996) An amperometric microsensor for the determination of H2S in aquatic environments. Anal Chem 68:4351–4357. doi: 10.1021/ac960091b CrossRefGoogle Scholar
  103. 103.
    Song Y, Muthuraman G, Zen J (2006) Trace analysis of hydrogen sulfide by monitoring as(III) at a poly(L-lactide) stabilized gold nanoparticles modified electrode. Electrochem Commun 8:1369–1374. doi: 10.1016/j.elecom.2006.06.014
  104. 104.
    Lawrence NS, Deo RP, Wang J (2004) Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Anal Chim Acta 517:131–137. doi: 10.1016/j.aca.2004.03.101 CrossRefGoogle Scholar
  105. 105.
    Vaishampayan MV, Deshmukh RG, Walke P, Mulla IS (2008) Fe-doped SnO2 nanomaterial: a low temperature hydrogen sulfide gas sensor. Mater Chem Phys 109:230–234. doi: 10.1016/j.matchemphys.2007.11.024 CrossRefGoogle Scholar
  106. 106.
    Cao Y, Jia D, Wang R, Luo J (2013) Rapid one-step room-temperature solid-state synthesis and formation mechanism of ZnO nanorods as H2S-sensing materials. Solid State Electron 82:67–71. doi: 10.1016/j.sse.2012.12.015
  107. 107.
    Yin L, Chen D, Zhang H, Shao G, Fan B, Zhang R, Shao G (2014) In situ formation of Au/SnO2 nanocrystals on WO3 nanoplates as excellent gas-sensing materials for H2S detection. Mater Chem Phys 148:1099–1107. doi: 10.1016/j.matchemphys.2014.09.025
  108. 108.
    Liu Y, Liu Z, Yang Y, Yang H, Shen G, Yu R (2005) Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensor Actuat B-Chem B 107:600–604. doi: 10.1016/j.snb.2004.11.026 CrossRefGoogle Scholar
  109. 109.
    Berahman M, Sheikhi MH (2015) Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sensor Actuat B-Chem 219:338–345. doi: 10.1016/j.snb.2015.04.114 CrossRefGoogle Scholar
  110. 110.
    Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, Fugetsu B, Zhang X (2016) Electrochemical hydrogen sulfide biosensors. Analyst 141:1185–1195. doi: 10.1039/c5an02208h CrossRefGoogle Scholar
  111. 111.
    Ding LH, Ma C, Li L, Zhang LN , Yu JH (2016)A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J Electroana Chem 783:176–181. doi: 10.1016/j.jelechem.2016.11.025
  112. 112.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142Google Scholar
  113. 113.
    Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 39:1925–1935CrossRefGoogle Scholar
  114. 114.
    Trouillon R (2013) Biological applications of the electrochemical sensing of nitric oxide: fundamentals and recent developments. Biol Chem 394:17–30. doi: 10.1515/hsz-2012-0245 CrossRefGoogle Scholar
  115. 115.
    Saldanha C, Lopes de Almeida JP, Silva-Herdade AS (2014) Application of a nitric oxide sensor in biomedicine. Biosensor 4:1–17. doi: 10.3390/bios4010001 CrossRefGoogle Scholar
  116. 116.
    Hurst RD, Clark JB (2003) The utility of the nitric oxide electrochemical sensor in biomedical research. Sensors-Basel 3:321–329. doi: 10.3390/s30800321 CrossRefGoogle Scholar
  117. 117.
    Kim S, Jung H, Lee C, Kim MH, Lee Y (2014) Biological application of RuO2 nanorods grown on a single carbon fiber for the real-time direct nitric oxide sensing. Sens Actuators B 191:298–304. doi: 10.1016/j.snb.2013.09.103 CrossRefGoogle Scholar
  118. 118.
    Wen W, Chen W, Ren QQ, Hu XY, Xiong HY, Zhang XH, Wang SF, Zhao YD (2012) A highly sensitive nitric oxide biosensor based on hemoglobin-chitosan/graphene- hexadecyltrimethylammonium bromide nanomatrix. Sens Actuators B 166-167:444–450CrossRefGoogle Scholar
  119. 119.
    Pang J, Fan C, Liu X, Chen T, Li G (2003) A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode. Biosens Bioelectron 19:441–445. doi: 10.1016/S0956-5663(03)00223-9 CrossRefGoogle Scholar
  120. 120.
    Haruyama T, Shiino S, Yanagida Y, Kobatake E, Aizawa M (1998) Two types of electrochemical nitric oxide (NO) sensing systems with heat-denatured Cyt C and radical scavenger PTIO. Biosens Bioelectron 13:763–769. doi: 10.1016/S0956-5663(98)00040-2 CrossRefGoogle Scholar
  121. 121.
    Cancino J, Borgmann S, Machado SA, Zucolotto V, Schuhmann W, Masa J (2015) Electrochemical sensor for nitric oxide using layered films composed of a polycationic dendrimer and nickel (II) phthalocyaninetetrasulfonate deposited on a carbon fiber electrode. Microchim Acta 182(5–6):1079–1087. doi: 10.1007/s00604-014-1425-0 CrossRefGoogle Scholar
  122. 122.
    Wang Y, Song B, Xu J, Hu S (2015) An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles. Microchim Acta 182(3-4):711–718. doi: 10.1007/s00604-014-1379-2 CrossRefGoogle Scholar
  123. 123.
    Govindhan M, Chen A (2016) Enhanced electrochemical sensing of nitric oxide using a nanocomposite consisting of platinum-tungsten nanoparticles, reduced graphene oxide and an ionic liquid. Microchim Acta 183(11):2879–2887. doi: 10.1007/s00604-016-1936-y CrossRefGoogle Scholar
  124. 124.
    ZhengD LX, ZhuS CH, ChenY HS (2015) Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite. Microchim Acta 182(15–16):2403–2410. doi: 10.1007/s00604-015-1561-1 CrossRefGoogle Scholar
  125. 125.
    DangX HH, Wang S, Hu S (2015) Nanomaterial-based electrochemical sensors for nitric oxide. Microchim Acta 182(3–4):455–467. doi: 10.1007/s00604-014-1325-3 CrossRefGoogle Scholar
  126. 126.
    Du F, Huang W, Shi Y, Wang Z, Cheng J (2008) Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosens Bioelectron 24:415–421. doi: 10.1016/j.bios.2008.04.020 CrossRefGoogle Scholar
  127. 127.
    Zheng D, Hu C, Peng Y, Yue W, Hu S (2008) Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor. Electrochem Commun 10:90–94. doi: 10.1016/j.elecom.2007.10.027 CrossRefGoogle Scholar
  128. 128.
    Abdelwahab AA, Koh WC, Noh HB, Shim YB (2010) A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: removal of interferences by co-immobilized enzymes. Biosens Bioelectron 26:1080–1086. doi: 10.1016/j.bios.2010.08.070 CrossRefGoogle Scholar
  129. 129.
    Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951. doi: 10.1021/nn301974u CrossRefGoogle Scholar
  130. 130.
    Li J, Xie J, Gao L, Li CM (2015) Au nanoparticles-3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide. ACS Appl Mater Interfaces 7:2726–2734. doi: 10.1021/am5077777 CrossRefGoogle Scholar
  131. 131.
    Hu FX, Xie JL, Bao SJ, Yu L, Li CM (2015) Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosens Bioelectron 70:310–317. doi: 10.1016/j.bios.2015.03.056 CrossRefGoogle Scholar
  132. 132.
    Ting SL, Guo CX, Leong KC, Kim D, Li CM, Chen P (2013) Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochim Acta 111:441–446. doi: 10.1016/j.electacta.2013.08.036 CrossRefGoogle Scholar
  133. 133.
    Liu Y, Wang X, Xu J, Xiao C, Liu Y, Zhang X, Liu J, Huang W (2015) Functionalized graphene-based biomimetic microsensor interfacing with living cells to sensitively monitor nitric oxide release. Chem Sci 6:1853–1858. doi: 10.1039/C4SC03123G CrossRefGoogle Scholar
  134. 134.
    Varatharajan S, Kumar KS, Berchmans S, Amutha R, Kiruthiga PV, Devi KP (2010) Synergistic effect of hydroxypropyl-beta-cyclodextrin encapsulated soluble ferrocene and the gold nanocomposite modified glassy carbon electrode for the estimation of NO in biological systems. Analyst 135:2348–2354. doi: 10.1039/c0an00091d CrossRefGoogle Scholar
  135. 135.
    Zan X, Fang Z, Wu J, Xiao F, Huo F, Duan H (2013) Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosens Bioelectron 49:71–78. doi: 10.1016/j.bios.2013.05.006
  136. 136.
    Uosaki K, Okazaki K, Kita H, Takahashi H (1990) Preparative method for fabricating a microelectrode ensemble: electrochemical response of microporous aluminum anodic oxide film modified gold electrode. Anal Chem 62:652–656. doi: 10.1021/ac00205a023 CrossRefGoogle Scholar
  137. 137.
    Xian Y, Liu M, Cai Q, Li H, Lu J, Jin L (2001) Preparation of microporous aluminium anodic oxide film modified Pt nano array electrode and application in direct measurement of nitric oxide release from myocardial cells. Analyst 126:871–876. doi: 10.1039/b010181h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information Science and TechnologyNanjingChina
  2. 2.College of Life Information Science & Instrument EngineeringHangzhou Dianzi UniversityHangzhouChina
  3. 3.State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations