Skip to main content
Log in

Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Peroxynitrite (PON for short) is a powerful nitrating, nitrosating and oxidative agent for cellular constituents. In vivo, PON is formed through the diffusion-controlled reaction between superoxide radical (O2 -) and nitric oxide (•NO). This critical review (with 67 refs.) covers the state of the art in nanomaterial-based (a) detection and imaging of PON inside cells and (b) monitoring of cellular events such as cellular oxidative burst by using optical or electrochemical methods. It starts with the formation, fate and pathophysiology of PON in vivo. The next part summarizes nanomaterial based electrochemical microsensors featuring nanofilms and nanostructured electrodes, nanospheres, 3D nanostructures and graphene-supported catalysts. A following chapter covers techniques based on optical nanoprobes, starting with nanomaterials used in optical detection of PON (including quantum dots, carbon dots, fluorescent organic polymer dots, rare earth nanocrystals including upconversion nanoparticles, iron oxide nanoparticles, gold nanoparticles, and fluorophore-modified nanoporous silicon). This is followed by subsections on strategies for optical detection of PON (including color changes, fluorescence quenching, activation and recovery), and on schemes for optimized spatial and temporal resolution, for improving sensitivity, selectivity, and (photo)stability. We then address critical issues related to biocompatibility, pharmacokinetics, give a number of representative practical applications and discuss challenges related to PON detection. The review concludes with a discussion of latest developments and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

AuNCs:

Gold nanoclusters

AuNPs:

Gold nanoparticles

BzSe-Cy:

Benzylselenide-tricarbocyanine

CA:

Citric acid

CV:

Cyclic voltammetry

CDs:

Carbon dots

CF-SPN:

Semiconductor polymer nanoparticles for combined CRET and FRET

CLIO:

Cross-linked iron oxide

CRET:

Chemiluminescence resonance energy transfer

DCF:

2′,7′-dichlorofluorescein

DL:

Detection limit

EPR:

Enhanced permeability and retention

FRET:

Fluorescence resonance energy transfer.

GCE:

Glassy carbon electrode

GSH–TGA–CdTe@ ZnS:

Core-shell quantum dots with CdTe core capped with TGA and shell of ZnS capped with GSH (GSH–TGA–CdTe@ ZnS)

HA:

Hyaluronic acid

iNOS:

Inducible nitric oxide synthase

IRhB:

Isopropylrhodamine B

IUPAC:

International Union of Pure and Applied Chemistry

LPS:

Lipopolysaccharide

LRET:

Luminescent energy transfer

MacTNP:

Macrophage-targeted theranostic nanoparticles

MPS:

Mononuclear phagocytic system

Mn-pDPB:

Manganese-[poly-2,5-di-(2-thienyl)-1H–pyrrole)-1-(p-benzoic acid)] complex

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)tetrazolium reduction assay

NIR:

Near infrared

NSET:

Nanometal-surface energy transfer

PA:

Photoacoustic

PEDOT:

Polyethylene-dioxythiophene

PEI:

Polyethyleneimine

PFODBT:

Poly[2,7-(9,9′-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]

PMA:

Phorbol 12-myristate 13-acetate

PN-CDs:

Phosphorus and nitrogen doped carbon dots

PON:

Peroxynitrite

PS-g-PEG-Gal:

Galactosylated graft copolymer of poly(styrene) and poly(ethylene glycol)

PVP:

Polyvinylpyridine

RES:

Reticuloendothelial system

rGo:

(Reduced) graphene oxide

RNS:

Reactive nitrogen species

RONS:

Reactive oxygen and nitrogen species

ROS:

Reactive oxygen species

RT:

response time

SPNs:

semiconductor polymer nanoparticles

TEMPO:

2,2,6,6-tetramethyl-1-piperidinyloxy

TGA:

Thioglycolic acid

TPCP Mn:

Mn (III)- paracyclophenylporphyrin

Trp-CD:

Tryptophan carbon dots

UCL:

Upconversion luminescence

UCNP:

Upconversion nanoparticles

WE:

Working electrode

References

  1. Peteu SF, Boukherroub R, Szunerits S (2014) Nitro-oxidative species in vivo biosensing: challenges and advances with focus on peroxynitrite quantification. Biosens Bioelectron 58:359–373. doi:10.1016/j.bios.2014.02.025

    Article  CAS  Google Scholar 

  2. Amatore C, Arbault S, Bouton C, Drapier J-C, Ghandour H, Koh ACW (2008) Real-time amperometric analysis of reactive oxygen and nitrogen species released by single Immunostimulated macrophages. Chembiochem 9(9):1472–1480. doi:10.1002/cbic.200700746

    Article  CAS  Google Scholar 

  3. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271(5 Pt 1):C1424–C1437

    CAS  Google Scholar 

  4. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5(6):834–842. doi:10.1021/tx00030a017

    Article  CAS  Google Scholar 

  5. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680. doi:10.1038/nrd2222

    Article  CAS  Google Scholar 

  6. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424. doi:10.1152/physrev.00029.2006

    Article  CAS  Google Scholar 

  7. Amemiya S, Guo J, Xiong H, Gross DA (2006) Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem 386(3):458–471. doi:10.1007/s00216-006-0510-6

    Article  CAS  Google Scholar 

  8. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254. doi:10.1016/S0955-0674(03)00002-4

    Article  CAS  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  10. Peteu SF, Banihani S, Gunesekera MM, Peiris P, Sicuia OA, Bayachou M (2011) Peroxynitrite and Nitroxidative Stress: Detection Probes and Micro-Sensors. A Case of a Nanostructured Catalytic Film. In: Oxidative Stress: Diagnostics, Prevention, and Therapy,. ACS Symposium Series, vol 1083. American Chemical Society, pp 311–339. doi:10.1021/bk-2011-1083.ch011

  11. Oprea R, Peteu SF, Subramanian P, Qi W, Pichonat E, Happy H, Bayachou M, Boukherroub R, Szunerits S (2013) Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst 138(15):4345–4352. doi:10.1039/C3AN00678F

    Article  CAS  Google Scholar 

  12. Koh WC, Son JI, Choe ES, Shim YB (2010) Electrochemical detection of peroxynitrite using a biosensor based on a conducting polymer-manganese ion complex. Anal Chem 82(24):10075–10082. doi:10.1021/ac102041u

    Article  CAS  Google Scholar 

  13. Peteu S, Peiris P, Gebremichael E, Bayachou M (2010) Nanostructured poly(3,4-ethylenedioxythiophene)–metalloporphyrin films: improved catalytic detection of peroxynitrite. Biosens Bioelectron 25(8):1914–1921. doi:10.1016/j.bios.2010.01.008

    Article  CAS  Google Scholar 

  14. Kubant R, Malinski C, Burewicz A, Malinski T (2006) Peroxynitrite/nitric oxide balance in ischemia/reperfusion injury-Nanomedical approach. Electroanalysis 18(4):410–416. doi:10.1002/elan.200503436

    Article  CAS  Google Scholar 

  15. Uusitalo LM, Hempel N (2012) Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications. Int J Mol Sci 13(9):10660. doi:10.3390/ijms130910660

    Article  CAS  Google Scholar 

  16. Dowd A, Pissuwan D, Cortie MB Optical readout of the intracellular environment using nanoparticle transducers. Trends Biotechnol 32(11):571–577. doi:10.1016/j.tibtech.2014.09.004

  17. Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH (2012) Fluorescent nanoparticles for intracellular sensing: a review. Anal Chim Acta 751:1–23. doi:10.1016/j.aca.2012.09.025

    Article  CAS  Google Scholar 

  18. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768. doi:10.1039/C4CS00392F

    Article  CAS  Google Scholar 

  19. Merian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules (Basel, Switzerland) 17(5):5564–5591. doi:10.3390/molecules17055564

    Article  CAS  Google Scholar 

  20. Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7(5):1549–1565. doi:10.1039/C4NR05794E

    Article  CAS  Google Scholar 

  21. Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135(5):868–874. doi:10.1039/b922291j

    Article  CAS  Google Scholar 

  22. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542. doi:10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

  23. Sciacca B, Pace S, Rivolo P, Geobaldo F (2012) Switching of fluorescence mediated by a peroxynitrite-glutathione redox reaction in a porous silicon nanoreactor. Phys Chem Chem Phys 14(15):5251–5254. doi:10.1039/C2CP23996E

    Article  CAS  Google Scholar 

  24. Chen T, Hu Y, Cen Y, Chu X, Lu Y (2013) A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc 135(31):11595–11602. doi:10.1021/ja4035939

    Article  CAS  Google Scholar 

  25. Adegoke O, Nyokong T (2013) Probing the sensitive and selective luminescent detection of peroxynitrite using thiol-capped CdTe and CdTe@ZnS quantum dots. J Lumin 134:448–455. doi:10.1016/j.jlumin.2012.08.002

    Article  CAS  Google Scholar 

  26. Pu K, Shuhendler AJ, Rao J (2013) Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed 52(39):10325–10329. doi:10.1002/anie.201303420

    Article  CAS  Google Scholar 

  27. Lee H, Lee K, Kim I-K, Park TG (2009) Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Adv Funct Mater 19(12):1884–1890. doi:10.1002/adfm.200801838

    Article  CAS  Google Scholar 

  28. Panizzi P, Nahrendorf M, Wildgruber M, Waterman P, Figueiredo J-L, Aikawa E, McCarthy J, Weissleder R, Hilderbrand SA (2009) Oxazine conjugated nanoparticle detects in vivo Hypochlorous acid and peroxynitrite generation. J Am Chem Soc 131(43):15739–15744. doi:10.1021/ja903922u

    Article  CAS  Google Scholar 

  29. Kim HKY, Kim IH, Kim K, Choi Y (2014) ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages. Theranostics 4(1):11. doi:10.7150/thno.7101

    Article  Google Scholar 

  30. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16(12):574–583. doi:10.1016/j.molmed.2010.08.006

    Article  Google Scholar 

  31. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and Biodiagnostic applications. Annu Rev Anal Chem 6(1):143–162. doi:10.1146/annurev-anchem-060908-155136

    Article  CAS  Google Scholar 

  32. Wang Y, Noël J-M, Velmurugan J, Nogala W, Mirkin MV, Lu C, Guille Collignon M, Lemaître F, Amatore C (2012) Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc Natl Acad Sci 109(29):11534–11539. doi:10.1073/pnas.1201552109

    Article  CAS  Google Scholar 

  33. Peteu SF, Bose T, Bayachou M (2013) Polymerized hemin as an electrocatalytic platform for peroxynitrite's oxidation and detection. Anal Chim Acta 780:81–88. doi:10.1016/j.aca.2013.03.057

    Article  CAS  Google Scholar 

  34. Peteu SF, Whitman BW, Galligan JJ, Swain GM (2016) Electrochemical detection of peroxynitrite using hemin-PEDOT functionalized boron-doped diamond microelectrode. Analyst 141(5):1796–1806. doi:10.1039/C5AN02587G

    Article  CAS  Google Scholar 

  35. Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M, Boukherroub R, Szunerits S (2015) Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 5(2):1474–1484. doi:10.1039/C4RA09781E

    Article  CAS  Google Scholar 

  36. Amatore C, Arbault S, Bruce D, de Oliveira P, Erard M, Vuillaume M (2000) Analysis of individual biochemical events based on artificial synapses using ultramicroelectrodes: cellular oxidative burst. Faraday Discuss 116:319–333 . doi:10.1039/B001448Fdiscussion 335-351

    Article  CAS  Google Scholar 

  37. Filipovic MR, Koh AC, Arbault S, Niketic V, Debus A, Schleicher U, Bogdan C, Guille M, Lemaitre F, Amatore C, Ivanovic-Burmazovic I (2010) Striking inflammation from both sides: manganese(II) pentaazamacrocyclic SOD mimics act also as nitric oxide dismutases: a single-cell study. Angew Chem Int Ed Eng 49(25):4228–4232. doi:10.1002/anie.200905936

    Article  CAS  Google Scholar 

  38. Amatore C, Arbault S, Bruce D, de Oliveira P, Erard LM, Vuillaume M (2001) Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chemistry 7(19):4171–4179. doi:10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5

    Article  CAS  Google Scholar 

  39. Mason RP, Jacob RF, Corbalan JJ, Szczesny D, Matysiak K, Malinski T (2013) The favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells. BMC Pharmacol Toxicol 14:48. doi:10.1186/2050-6511-14-48

    Article  Google Scholar 

  40. Malinski T (2015) Using nanosensors for in situ monitoring and measurement of nitric oxide and peroxynitrite in a single cell. Methods Mol Biol 1208:139–155. doi:10.1007/978-1-4939-1441-8_11

    Article  CAS  Google Scholar 

  41. Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Woisel P, Opallo M, Szunerits S, Boukherroub R (2012) Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chem Commun (Camb) 48(9):1221–1223. doi:10.1039/c1cc15215g

    Article  CAS  Google Scholar 

  42. Simões EFC, da Silva JCGE, Leitão JMM (2014) Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal Chim Acta 852:174–180. doi:10.1016/j.aca.2014.08.050

    Article  Google Scholar 

  43. Gong Y, Yu B, Yang W, Zhang X (2016) Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens Bioelectron 79:822–828. doi:10.1016/j.bios.2016.01.022

    Article  CAS  Google Scholar 

  44. Simões EFC, Esteves da Silva JCG, Leitão JMM (2015) Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sens Actuat B-Chem 220:1043–1049. doi:10.1016/j.snb.2015.06.072

    Article  Google Scholar 

  45. Simões EFC, Leitão JMM, da Silva JCGE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777. doi:10.1007/s00604-016-1807-6

    Article  Google Scholar 

  46. Tian J, Chen H, Zhuo L, Xie Y, Li N, Tang B (2011) A highly selective, cell-permeable fluorescent nanoprobe for ratiometric detection and imaging of peroxynitrite in living cells. Chem Eur J 17(24):6626–6634. doi:10.1002/chem.201100148

    Article  CAS  Google Scholar 

  47. Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32(4):373–380. doi:10.1038/nbt.2838

    Article  CAS  Google Scholar 

  48. Chen Z, Liu Z, Li Z, Ju E, Gao N, Zhou L, Ren J, Qu X (2015) Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Biomaterials 39:15–22. doi:10.1016/j.biomaterials.2014.10.066

    Article  CAS  Google Scholar 

  49. Chen L, Wu N, Sun B, Su H, Ai S (2013) Colorimetric detection of peroxynitrite-induced DNA damage using gold nanoparticles, and on the scavenging effects of antioxidants. Microchim Acta 180(7):573–580. doi:10.1007/s00604-013-0958-y

    Article  CAS  Google Scholar 

  50. Jia X, Chen Q, Yang Y, Tang Y, Wang R, Xu Y, Zhu W, Qian X (2016) FRET-based Mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: dyad of Cy3 and Cy5. J Am Chem Soc 138(34):10778–10781. doi:10.1021/jacs.6b06398

    Article  CAS  Google Scholar 

  51. Chen Z, Truong TM, Ai H-W (2016) CHAPTER 10 development of fluorescent probes for the detection of peroxynitrite. In: In: Peroxynitrite Detection in Biological Media: Challenges and Advances. The Royal Society of Chemistry, pp 186–207. doi:10.1039/9781782622352–00186

  52. Li P, Han K (2016) CHAPTER 11 reversible near-infrared fluorescent probes for peroxynitrite monitoring. In: In: Peroxynitrite Detection in Biological Media: Challenges and Advances. The Royal Society of Chemistry, pp 208–226. doi:10.1039/9781782622352–00208

  53. Zhang Q, Zhu Z, Zheng Y, Cheng J, Zhang N, Long Y-T, Zheng J, Qian X, Yang Y (2012) A Three-Channel fluorescent probe that distinguishes peroxynitrite from hypochlorite. J Am Chem Soc 134(45):18479–18482. doi:10.1021/ja305046u

    Article  CAS  Google Scholar 

  54. Xu K, Chen H, Tian J, Ding B, Xie Y, Qiang M, Tang B (2011) A near-infrared reversible fluorescent probe for peroxynitrite and imaging of redox cycles in living cells. Chem Commun 47(33):9468–9470. doi:10.1039/C1CC12994E

    Article  CAS  Google Scholar 

  55. Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 271(46):29223–29230. doi:10.1074/jbc.271.46.29223

    Article  CAS  Google Scholar 

  56. Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33(2):422–432. doi:10.1016/s0008-6363(96)00254-4

    Article  CAS  Google Scholar 

  57. Fuchs B, Schiller J (2013) Glycosaminoglycan degradation by selected reactive oxygen species. Antioxid Redox Signal 21(7):1044–1062. doi:10.1089/ars.2013.5634

    Article  Google Scholar 

  58. Kennett EC, Davies MJ (2007) Degradation of matrix glycosaminoglycans by peroxynitrite/peroxynitrous acid: evidence for a hydroxyl-radical-like mechanism. Free Radic Biol Med 42(8):1278–1289. doi:10.1016/j.freeradbiomed.2007.01.030

    Article  CAS  Google Scholar 

  59. Šoltés L, Mendichi R, Kogan G, Schiller J, Stankovská M, Arnhold J (2006) Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7(3):659–668. doi:10.1021/bm050867v

    Article  Google Scholar 

  60. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466. doi:10.1016/j.addr.2009.03.010

    Article  CAS  Google Scholar 

  61. Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. TrAC Trends Anal Chem 22(8):509–514. doi:10.1016/S0165-9936(03)00907-5

    Article  CAS  Google Scholar 

  62. Vasilescu A, Dinca V, Filipescu M, Rusen L, Hosu IS, Boukherroub R, Szunerits S, Dinescu M, Peteu SF (2016) CHAPTER 9 Recent Approaches to Enhance the Selectivity of Peroxynitrite Detection. In: In: Peroxynitrite Detection in Biological Media: Challenges and Advances. The Royal Society of Chemistry, pp 166–185. doi:10.1039/9781782622352–00166

  63. Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P (2013) Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7(7):6278–6286. doi:10.1021/nn4023137

    Article  CAS  Google Scholar 

  64. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636. doi:10.1002/smll.201402648

    Article  CAS  Google Scholar 

  65. Burmistrova N, Kolontaeva O, Duerkop A (2015) New nanomaterials and luminescent optical sensors for detection of hydrogen peroxide. Chemosensors 3(4):253. doi:10.3390/chemosensors3040253

    Article  Google Scholar 

  66. Jiang C, Liu R, Han G, Zhang Z (2013) A chemically reactive Raman probe for ultrasensitively monitoring and imaging the in vivo generation of femtomolar oxidative species as induced by anti-tumor drugs in living cells. Chem Commun 49(59):6647–6649. doi:10.1039/C3CC43410A

    Article  CAS  Google Scholar 

  67. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9(3):233–239. doi:10.1038/nnano.2013.302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by grants of the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), Romanian Ministry of National Education and Scientific Research, project PN-II-PT-PCCA-2011-3.1-1809 (for AV) and PNII-ID- PCCE-2011–2-0075 (for MG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serban Peteu.

Ethics declarations

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Additional information

Alina Vasilescu and Mihaela Gheorghiu have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilescu, A., Gheorghiu, M. & Peteu, S. Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review. Microchim Acta 184, 649–675 (2017). https://doi.org/10.1007/s00604-017-2093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2093-7

Keywords

Navigation