Skip to main content
Log in

Methods for detection and measurement of hydrogen peroxide inside and outside of cells

  • Minireview
  • Published:
Molecules and Cells

Abstract

Hydrogen peroxide (H2O2) is an incompletely reduced metabolite of oxygen that has a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of its production. Characterization of the cellular functions of H2O2 requires measurement of its concentration selectively in the presence of other oxygen metabolites and with spatial and temporal fidelity in live cells. For the measurement of H2O2 in biological fluids, several sensitive methods based on horseradish peroxidase and artificial substrates (such as Amplex Red and 3,5,3’5’-tetramethylbenzidine) or on ferrous oxidation in the presence of xylenol orange (FOX) have been developed. For measurement of intracellular H2O2, methods based on dihydro compounds such as 2’,7’-dichlorodihydrofluorescein that fluoresce on oxidation are used widely because of their sensitivity and simplicity. However, such probes react with a variety of cellular oxidants including nitric oxide, peroxynitrite, and hypochloride in addition to H2O2. Deprotection reaction-based probes (PG1 and PC1) that fluoresce on H2O2-specific removal of a boronate group rather than on nonspecific oxidation have recently been developed for selective measurement of H2O2 in cells. Furthermore, a new class of organelle-targetable fluorescent probes has been devised by joining PG1 to a substrate of SNAP-tag. Given that SNAP-tag can be genetically targeted to various subcellular organelles, localized accumulation of H2O2 can be monitored with the use of SNAP-tag bioconjugation chemistry. However, given that both dihydro- and deprotection-based probes react irreversibly with H2O2, they cannot be used to monitor transient changes in H2O2 concentration. This drawback has been overcome with the development of redox-sensitive green fluorescent protein (roGFP) probes, which are prepared by the introduction of two redox-sensitive cysteine residues into green fluorescent protein; the oxidation of these residues to form a disulfide results in a conformational change of the protein and altered fluorogenic properties. Such genetically encoded probes react reversibly with H2O2 and can be targeted to various compartments of the cell, but they are not selective for H2O2 because disulfide formation in roGFP is promoted by various cellular oxidants. A new type of H2O2-selective, genetically encoded, and reversible fluorescent probe, named HyPer, was recently prepared by insertion of a circularly permuted yellow fluorescent protein (cpYFP) into the bacterial peroxide sensor protein OxyR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartosz, G. (2006). Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368, 53–76.

    Article  CAS  PubMed  Google Scholar 

  • Bass, D.A., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C., and Thomas, M. (1983). Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917.

    CAS  PubMed  Google Scholar 

  • Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T.S., Cho, C.S., Park, S., Yu, S., Kang, S.W., and Rhee, S.G. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975–41984.

    Article  CAS  PubMed  Google Scholar 

  • Crow, J.P. (1997). Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • D’Autreaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824.

    Article  PubMed  Google Scholar 

  • Dooley, C.T., Dore, T.M., Hanson, G.T., Jackson, W.C., Remington, S.J., and Tsien, R.Y. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293.

    Article  CAS  PubMed  Google Scholar 

  • Gautier, A., Juillerat, A., Heinis, C., Correa, I.R., Jr., Kindermann, M., Beaufils, F., and Johnsson, K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Gay, C., and Gebicki, J.M. (2000). A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal. Biochem. 284, 217–220.

    Article  CAS  PubMed  Google Scholar 

  • Giorgio, M., Trinei, M., Migliaccio, E., and Pelicci, P.G. (2007). Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8, 722–728.

    Article  CAS  Google Scholar 

  • Gunasekar, P.G., Kanthasamy, A.G., Borowitz, J.L., and Isom, G.E. (1995). Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells. J. Neurosci. Methods 61, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluore-scent protein indicators. J. Biol. Chem. 279, 13044–13053.

    Article  CAS  PubMed  Google Scholar 

  • Hempel, S.L., Buettner, G.R., O’Malley, Y.Q., Wessels, D.A., and Flaherty, D.M. (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2’,7’-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Rad. Biol. Med. 27, 146–159.

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Heininger, Y.M., Mossman, B.T., Heintz, N.H., Forman, H.J., Kalyanaraman, B., Finkel, T., Stamler, J.S., Rhee, S.G., and van der Vliet, A. (2008). Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Rad. Biol. Med. 45, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, W., Cha, M.K., and Kim, I.H. (2000). Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275, 2924–2930.

    Article  CAS  PubMed  Google Scholar 

  • Kooy, N.W., Royall, J.A., and Ischiropoulos, H. (1997). Oxidation of 2’,7’-dichlorofluorescin by peroxynitrite. Free Rad. Res. 27, 245–254.

    Article  CAS  Google Scholar 

  • Lee, J.Y., Jung, H.J., Song, I.S., Williams, M.S., Choi, C., Rhee, S.G., Kim, J., and Kang, S.W. (2009). Protective role of cytosolic 2-Cys peroxiredoxin in the TNF-α-induced apoptotic death of human cancer cells. Free Rad. Biol. Med. 47, 1162–1171.

    Article  CAS  PubMed  Google Scholar 

  • Lyon, J.L., and Stevenson, K.J. (2006). Picomolar peroxide detection using a chemically activated redox mediator and square wave voltammetry. Anal. Chem. 78, 8518–8525.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, H., Yamamoto, K., Nomura, Y., Kohno, I., Hafsi, L., Ueda, N., Yoshida, S., Fukuda, M., Fukuyasu, Y., Yamauchi, Y., et al. (2005). A design of fluorescent probes for superoxide based on a nonredox mechanism. J. Am. Chem. Soc. 127, 68–69.

    Article  CAS  PubMed  Google Scholar 

  • Markvicheva, K.N., Bogdanova, E.A., Staroverov, D.B., Lukyanov, S., and Belousov, V.V. (2008). Imaging of intracellular hydrogen peroxide production with HyPer upon stimulation of HeLa cells with epidermal growth factor. Methods Mol. Biol. 476, 79–86.

    CAS  PubMed  Google Scholar 

  • Miller, E.W., Tulyathan, O., Isacoff, E.Y., and Chang, C.J. (2007). Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202.

    Article  CAS  PubMed  Google Scholar 

  • Niethammer, P., Grabher, C., Look, A.T., and Mitchison, T.J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999.

    Article  CAS  PubMed  Google Scholar 

  • Oakley, F.D., Abbott, D., Li, Q., and Engelhardt, J.F. (2009). Signaling components of redox active endosomes: the redoxosomes. Antioxidants Redox Signal. 11, 1313–1333.

    Article  CAS  Google Scholar 

  • Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  CAS  PubMed  Google Scholar 

  • Palomero, J., Pye, D., Kabayo, T., Spiller, D.G., and Jackson, M.J. (2008). In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy. Antioxidants Redox Signal. 10, 1463–1474.

    Article  CAS  Google Scholar 

  • Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885–11892.

    Article  CAS  PubMed  Google Scholar 

  • Pick, E., and Keisari, Y. (1980). A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 38, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, S.G. (2006). Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883.

    Article  PubMed  Google Scholar 

  • Setsukinai, K.-i., Urano, Y., Kakinuma, K., Majima, H.J., and Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175.

    Article  CAS  PubMed  Google Scholar 

  • Srikun, D., Albers, A.E., Nam, C.I., Iavarone, A.T., and Chang, C.J. (2010). Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465.

    Article  CAS  PubMed  Google Scholar 

  • Ubezio, P., and Civoli, F. (1994). Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells. Free Radical Biol. Med. 16, 509–516.

    Article  CAS  Google Scholar 

  • Ushio-Fukai, M. (2009). Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxidants Redox Signal. 11, 1289–1299.

    Article  CAS  Google Scholar 

  • Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Patel, H.N., Lappe, J.W., and Wachter, R.M. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. J. Am. Chem. Soc. 128, 4766–4772.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Aslund, F., and Storz, G. (1998). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R.P. (1997). A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253, 162–168.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Goo Rhee.

About this article

Cite this article

Rhee, S.G., Chang, TS., Jeong, W. et al. Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29, 539–549 (2010). https://doi.org/10.1007/s10059-010-0082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0082-3

Keywords

Navigation