Skip to main content
Log in

Nanomaterials-based electrochemical sensors for nitric oxide

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO2). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section.

This review gives a general view of recent advances in the development of NO electrochemical sensors based on different nanomaterials, including carbon derived nanomaterials, metal nanoparticles, semiconductor nanomaterials, and nanocomposites. The trends in NO sensor nanotechnology are outlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  Google Scholar 

  2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84:9265–9269

    CAS  Google Scholar 

  3. Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    CAS  Google Scholar 

  4. Wang Y, Marsden PA (1995) Nitric Oxide Synthases: Gene Structure and Regulation, in Advances in Pharmacology, I. Louis and M. Ferid, Editors. Academic Press. pp. 71–90

  5. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    CAS  Google Scholar 

  6. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    CAS  Google Scholar 

  7. Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    CAS  Google Scholar 

  8. Luo JD, Chen AF (2005) Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 26:259–264

    CAS  Google Scholar 

  9. MacMicking J, Xie Q, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    CAS  Google Scholar 

  10. Stamler JS (1999) Nitric oxide in the cardiovascular system. Coron Artery Dis 10:273–276

    Google Scholar 

  11. Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH (2008) Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano 2:235–246

    CAS  Google Scholar 

  12. Riccio DA, Dobmeier KP, Hetrick EM, Privett BJ, Paul HS, Schoenfisch MH (2009) Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials 30:4494–4502

    CAS  Google Scholar 

  13. Lancaster JR (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30

    CAS  Google Scholar 

  14. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Bio Med 45:18–31

    CAS  Google Scholar 

  15. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Bio Med 25:434–456

    CAS  Google Scholar 

  16. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103

    CAS  Google Scholar 

  17. Yao D, Vlessidis AG, Evmiridis NP (2004) Determination of nitric oxide in biological samples. Microchim Acta 147:1–20

    CAS  Google Scholar 

  18. Griveau S, Bedioui F (2013) Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Anal Bioanal Chem 405:3475–3488

    CAS  Google Scholar 

  19. Trouillon R (2012) Biological applications of the electrochemical sensing of nitric oxide: fundamentals and recent developments. Biol Chem 394:17–33

    Google Scholar 

  20. Zhang XJ (2004) Real time and in vivo monitoring of nitric oxide by electrocehmical sensors - from dream to reality. Front Biosci-Landmrk 9:3434–3446

    CAS  Google Scholar 

  21. Xu T, Scafa N, Xu LP, Su L, Li C, Zhou S, Liu Y, Zhang X (2014) Electrochemical sensors for nitric oxide detection in biological applications. Electroanal 26:449–468

    CAS  Google Scholar 

  22. Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 39:1925–1935

    CAS  Google Scholar 

  23. Davies IR, Zhang X (2008) Nitric Oxide Selective Electrodes, in Methods in Enzymology, K.P. Robert, Editor. Academic Press. pp. 63–95

  24. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    CAS  Google Scholar 

  25. Bedioui F, Villeneuve N (2003) Electrochemical nitric oxide sensors for biological samples - principle, selected examples and applications. Electroanal 15:5–18

    CAS  Google Scholar 

  26. Brown FO, Finnerty NJ, Lowry JP (2009) Nitric oxide monitoring in brain extracellular fluid: characterisation of nafion (R)-modified Pt electrodes in vitro and in vivo. Analyst 134:2012–2020

    CAS  Google Scholar 

  27. Prakash R, Srivastava RC, Seth PK (2001) Polycarbazole modified electrode; nitric oxide sensor. Polym Bull 46:487–490

    CAS  Google Scholar 

  28. Kitamura Y, Uzawa T, Oka K, Komai Y, Ogawa H, Takizawa N, Kobayashi H, Tanishita K (2000) Microcoaxial electrode for in vivo nitric oxide measurement. Anal Chem 72:2957–2962

    CAS  Google Scholar 

  29. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH (2008) Fluorinated xerogel-derived microelectrodes for amperometric nitric oxide sensing. Anal Chem 80:6850–6859

    CAS  Google Scholar 

  30. Lee Y, Kim J (2007) Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues. Anal Chem 79:7669–7675

    CAS  Google Scholar 

  31. Diab N, Schuhmann W (2001) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta 47:265–273

    CAS  Google Scholar 

  32. Nyokong T, Vilakazi S (2003) Phthalocyanines and related complexes as electrocatalysts for the detection of nitric oxide. Talanta 61:27–35

    CAS  Google Scholar 

  33. Vilakazi SL, Nyokong T (2001) Voltammetric determination of nitric oxide on cobalt phthalocyanine modified microelectrodes. J Electroanal Chem 512:56–63

    CAS  Google Scholar 

  34. Francisco Silva J, Griveau S, Richard C, Zagal JH, Bedioui F (2007) Glassy carbon electrodes modified with single walled carbon nanotubes and cobalt phthalocyanine and nickel tetrasulfonated phthalocyanine: highly stable new hybrids with enhanced electrocatalytic performances. Electrochem Commun 9:1629–1634

    CAS  Google Scholar 

  35. Pereira-Rodrigues N, Albin V, Koudelka-Hep M, Auger V, Pailleret A, Bedioui F (2002) Nickel tetrasulfonated phthalocyanine based platinum microelectrode array for nitric oxide oxidation. Electrochem Commun 4:922–927

    CAS  Google Scholar 

  36. Miserere S, Ledru S, Ruillé N, Griveau S, Boujtita M, Bedioui F (2006) Biocompatible carbon-based screen-printed electrodes for the electrochemical detection of nitric oxide. Electrochem Commun 8:238–244

    CAS  Google Scholar 

  37. Mao L, Yamamoto K, Zhou W, Jin L (2000) Electrochemical nitric oxide sensors based on electropolymerized film of M (salen) with central ions of Fe Co, Cu Mn. Electroanal 12:72–77

    CAS  Google Scholar 

  38. Santos VN, Mendonca GL, Freire VN, Holanda AK, Sousa JR, Lopes LG, Ellena J, Correia AN, de Lima-Neto P (2013) Electrochemical and monte Carlo studies of self-assembled trans-[Fe (cyclam) (NCS) 2] + complex ion on gold surface as electrochemical sensor for nitric oxide. Electrochim Acta 91:1–10

    CAS  Google Scholar 

  39. Wang YZ, Hu SS (2006) A novel nitric oxide biosensor based on electropolymerization poly (toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens Bioelectron 22:10–17

    Google Scholar 

  40. Chen XX, Wang Y, Hu SS (2008) A novel amperometric sensor for the determination of nitric oxide, and its application in rat liver cells. Microchim Acta 161:255–263

    CAS  Google Scholar 

  41. Chen XX, Xie PP, Tian QL, Hu SS (2006) Amperometric nitric oxide sensor based on poly (thionine)/nafion-modified electrode and its application in monitoring nitric oxide release from rat kidney. Anal Lett 39:1321–1332

    CAS  Google Scholar 

  42. Peng YF, Ji YP, Zheng DY, Hu SS (2009) In situ monitoring of nitric oxide release from rat kidney at poly (eosin b)-ionic liquid composite-based electrochemical sensors. Sens Actuators B-Chem 137:656–661

    CAS  Google Scholar 

  43. Zheng DY, Hu CG, Peng YF, Yue WQ, Hu SS (2008) Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor. Electrochem Commun 10:90–94

    CAS  Google Scholar 

  44. Lu Q, Hu SS, Pang DW, He ZK (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun 2584–2585

  45. Liu XJ, Shang LB, Pang JT, Li GX (2003) A reagentless nitric oxide biosensor based on haemoglobin/polyethyleneimine film. Biotechnol Appl Biochem 38:119–122

    Google Scholar 

  46. Wang F, Chen X, Xu HS, Gao Z (2007) Enhanced electron transfer for hemoglobin entrapped in a cationic Gemini surfactant films on electrode and the fabrication of nitric oxide biosensor. Biosens Bioelectron 23:176–182

    Google Scholar 

  47. Fan C, Liu X, Pang J, Li G, Scheer H (2004) Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Anal Chim Acta 523:225–228

    CAS  Google Scholar 

  48. Xuan GS, Jung S, Kim S (2004) Electrocatalytic reduction of nitric oxide by cytochrome P450-modified gold electrodes. Bull Korean Chem Soc 25:165–166

    CAS  Google Scholar 

  49. Shang LB, Liu XJ, Fan CH, Li GX (2004) A nitric oxide biosensor based on horseradish peroxidase/kieselguhr co-modified pyrolytic graphite electrode. Ann Chim 94:457–462

    CAS  Google Scholar 

  50. Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62:316–328

    CAS  Google Scholar 

  51. Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980–1990

    CAS  Google Scholar 

  52. Merkoci A (2007) Nanobiomaterials in electroanalysis. Electroanal 19:739–741

    CAS  Google Scholar 

  53. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal 16:19–44

    CAS  Google Scholar 

  54. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes (2005) chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    CAS  Google Scholar 

  55. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22

    CAS  Google Scholar 

  56. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    CAS  Google Scholar 

  57. Cheng W, Dong S, Wang E (2002) Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 74:3599–3604

    CAS  Google Scholar 

  58. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should You Use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    CAS  Google Scholar 

  59. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    CAS  Google Scholar 

  60. Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420

    CAS  Google Scholar 

  61. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    CAS  Google Scholar 

  62. Ajayan P, Zhou O (2001) Applications of carbon nanotubes. In: Carbon Nanotubes M, Dresselhaus G (eds) Dresselhaus, and P. Avouris, Editors. Springer Berlin Heidelberg, pp 391–425

    Google Scholar 

  63. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  64. Cai CX, Chen J, Bao JC, Lu TH (2004) Applications of carbon nanotubes in analytical chemistry. Chin J Anal Chem 32:381–387

    CAS  Google Scholar 

  65. Gong KP, Yan YM, Zhang MN, Su L, Xiong SX, Mao LQ (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21:1383–1393

    CAS  Google Scholar 

  66. Li NQ, Wang JX, Li MX (2003) Electrochemistry at carbon nanotube electrodes. Rev Anal Chem 22:19–33

    Google Scholar 

  67. Varghese SH, Nair R, Nair BG, Hanajiri T, Maekawa T, Yoshida Y, Kumar DS (2010) Sensors based on carbon nanotubes and their applications: a review. Curr Nanosci 6:331–346

    CAS  Google Scholar 

  68. Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbent for nitrogen oxides. Ind Eng Chem Res 40:4288–4291

    CAS  Google Scholar 

  69. Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570

    CAS  Google Scholar 

  70. Wu FH, Zhao GC, Wei XW (2002) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Commun 4:690–694

    CAS  Google Scholar 

  71. Xia T, Bi H, Shi K (2010) Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes. J Chem Sci 122:401–408

    CAS  Google Scholar 

  72. Li CM, Zang J, Zhan D, Chen W, Sun CQ, Teo AL, Chua Y, Lee V, Moochhala S (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanal 18:713–718

    Google Scholar 

  73. Wang Y, Li Q, Hu S (2005) A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochemistry 65:135–142

    CAS  Google Scholar 

  74. Kan K, Xia TL, Yang Y, Bi HM, Fu HG, Shi KY (2010) Functionalization of multi-walled carbon nanotube for electrocatalytic oxidation of nitric oxide. J Appl Electrochem 40:593–599

    CAS  Google Scholar 

  75. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    CAS  Google Scholar 

  76. Bedioui F, Trevin S, Albin V, Guadalupe M, Villegas G, Devynck J (1997) Design and characterization of chemically modified electrodes with iron (III) porphyrinic-based polymers: study of their reactivity toward nitrites and nitric oxide in aqueous solution. Anal Chim Acta 341:177–185

    CAS  Google Scholar 

  77. Hayon J, Ozer D, Rishpon J, Bettelheim A (1994) Spectroscopic and electrochemical response to nitrogen monoxide of a cationic iron porphyrin immobilized in nafion-coated electrodes or membranes. J Chem Soc, Chem Commun 619–620

  78. Leung E, Cragg PJ, O’Hare D, O'Shea M (1996) A novel in vivo nitric oxide sensor. Chem Commun 23–24

  79. Yan Y, Yao PP, Mu Q, Wang L, Mu J, Li XQ, Kang SZ (2011) Electrochemical behavior of amino-modified multi-walled carbon nanotubes coordinated with cobalt porphyrin for the oxidation of nitric oxide. Appl Surf Sci 258:58–63

    CAS  Google Scholar 

  80. Tu W, Lei J, Ju H (2008) Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem Commun 10:766–769

    CAS  Google Scholar 

  81. Zhao L, Zhu S, Zhou J (2012) A novel amperometric nitric oxide sensor based on imprinted microenvironments for controlling metal coordination. Sens Actuators B 171–172:563–571

    Google Scholar 

  82. Peng Y, Ji Y, Zheng D, Hu S (2009) In situ monitoring of nitric oxide release from rat kidney at poly (eosin b)-ionic liquid composite-based electrochemical sensors. Sens Actuators, B 137:656–661

    CAS  Google Scholar 

  83. Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM (2013) Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron 44:152–159

    CAS  Google Scholar 

  84. Li P, Ding Y, Lu Z, Li Y, Zhu X, Zhou Y, Tang Y, Chen Y, Cai C, Lu T (2013) Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing. Talanta 115:228–234

    CAS  Google Scholar 

  85. Zhang L, Zhao GC, Wei XW, Yang ZS (2005) A nitric oxide biosensor based on myoglobin adsorbed on multi‐walled carbon nanotubes. Electroanal 17:630–634

    Google Scholar 

  86. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36

    CAS  Google Scholar 

  87. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    CAS  Google Scholar 

  88. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    CAS  Google Scholar 

  89. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State 35:52–71

    CAS  Google Scholar 

  90. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Google Scholar 

  91. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    CAS  Google Scholar 

  92. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    CAS  Google Scholar 

  93. Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12:175–177

    CAS  Google Scholar 

  94. Wen W, Chen W, Ren QQ, Hu XY, Xiong HY, Zhang XH, Wang SF, Zhao YD (2012) A highly sensitive nitric oxide biosensor based on hemoglobin–chitosan/graphene–hexadecyltrimethylammonium bromide nanomatrix. Sens Actuators, B 166–167:444–450

    Google Scholar 

  95. Dang XP, Zheng JO, Hu CG, Wang SF, Hu SS (2013) Hemoglobin biosensor based on reduced graphite oxide modified gold electrode array printed on paper. Chem Sens 3:17

    Google Scholar 

  96. Ng SR, Guo CX, Li CM (2011) Highly Sensitive Nitric Oxide Sensing Using Three-Dimensional Graphene/Ionic Liquid Nanocomposite. Electroanal 23:442–448

    CAS  Google Scholar 

  97. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Google Scholar 

  98. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    CAS  Google Scholar 

  99. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    CAS  Google Scholar 

  100. Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951

    CAS  Google Scholar 

  101. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanal 15:753–772

    CAS  Google Scholar 

  102. Zhou M, Guo J, Guo LP, Bai J (2008) Electrochemical sensing platform based on the highly ordered mesoporous carbon − fullerene system. Anal Chem 80:4642–4650

    CAS  Google Scholar 

  103. Zhang P, Zhao GC, Wei XW (2005) Electrocatalytic oxidation of nitric oxide on an electrode modified with fullerene films. Microchim Acta 149:223–228

    CAS  Google Scholar 

  104. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    CAS  Google Scholar 

  105. Rothrock AR, Donkers RL, Schoenfisch MH (2005) Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc 127:9362–9363

    CAS  Google Scholar 

  106. Polizzi MA, Stasko NA, Schoenfisch MH (2007) Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir 23:4938–4943

    CAS  Google Scholar 

  107. Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2007) Photodelivery of nitric oxide from water-soluble platinum nanoparticles. J Am Chem Soc 129:480–481

    CAS  Google Scholar 

  108. Thangavel S, Ramaraj R (2008) Polymer membrane stabilized gold nanostructures modified electrode and its application in nitric oxide detection. J Phys Chem C 112:19825–19830

    CAS  Google Scholar 

  109. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  110. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    CAS  Google Scholar 

  111. Kannan P, John SA (2010) Highly sensitive electrochemical determination of nitric oxide using fused spherical gold nanoparticles modified ITO electrode. Electrochim Acta 55:3497–3503

    CAS  Google Scholar 

  112. Yu A, Liang Z, Cho J, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203–1207

    CAS  Google Scholar 

  113. Vinu Mohan AM, Aswini KK, Biju VM (2014) Electrochemical codeposition of gold particle–poly (2-(2-pyridyl) benzimidazole) hybrid film on glassy carbon electrode for the electrocatalytic oxidation of nitric oxide. Sens Actuators, B 196:406–412

    CAS  Google Scholar 

  114. Zhang J, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299–306

    CAS  Google Scholar 

  115. Li YJ, Liu C, Yang MH, He Y, Yeung ES (2008) Large-scale self-assembly of hydrophilic gold nanoparticles at oil/water interface and their electro-oxidation for nitric oxide in solution. J Electroanal Chem 622:103–108

    CAS  Google Scholar 

  116. Zhu M, Liu M, Shi G, Xu F, Ye X, Chen J, Jin L, Jin J (2002) Novel nitric oxide microsensor and its application to the study of smooth muscle cells. Anal Chim Acta 455:199–206

    CAS  Google Scholar 

  117. Dang XP, Hu CG, Wang YK, Hu SS (2011) Gold nanoparticle film grown on quartz fiber and its application as a microsensor of nitric oxide. Sens Actuators, B 160:260–265

    CAS  Google Scholar 

  118. Yap CM, Xu GQ, Ang SG (2012) Amperometric nitric oxide sensor based on nanoporous platinum phthalocyanine modified electrodes. Anal Chem 85:107–113

    Google Scholar 

  119. Wang S, Lin X (2005) Electrodeposition of Pt–Fe (III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochim Acta 50:2887–2891

    CAS  Google Scholar 

  120. Xian YZ, Zhang W, Xue J, Ying XY, Jin LT, Jin JY (2000) Measurement of nitric oxide released in the rat heart with an amperometric microsensor. Analyst 125:1435–1439

    CAS  Google Scholar 

  121. Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17

    CAS  Google Scholar 

  122. Zhang G, Liu M (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens Actuators, B 69:144–152

    CAS  Google Scholar 

  123. Cabot A, Marsal A, Arbiol J, Morante J (2004) Bi2O3 as a selective sensing material for NO detection. Sens Actuators, B 99:74–89

    CAS  Google Scholar 

  124. Peter Martin L, Quoc Pham A, Glass RS (2003) Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor. Sens Actuators, B 96:53–60

    CAS  Google Scholar 

  125. Sun C, Maduraiveeran G, Dutta P (2013) Nitric oxide sensors using combination of p- and n-type semiconducting oxides and its application for detecting NO in human breath. Sens Actuators, B 186:117–125

    CAS  Google Scholar 

  126. Liu CC, Li JH, Chang CC, Chao YC, Meng HF, Hung CH, Meng TC (2009) Selective real-time nitric oxide detection by functionalized zinc oxide. J Phys D Appl Phys 42:155105

    Google Scholar 

  127. Lin CY, Chen JG, Feng WY, Lin CW, Huang JW, Tunney JJ, Ho KC (2011) Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor. Sens Actuators, B 157:361–367

    CAS  Google Scholar 

  128. He Q, Zheng D, Hu S (2009) Development and application of a nano-alumina based nitric oxide sensor. Microchim Acta 164:459–464

    CAS  Google Scholar 

  129. Wang YZ, Li CY, Hu SS (2006) Electrocatalytic oxidation of nitric oxide at nano-TiO2/Nafion composite film modified glassy carbon electrode. J Solid State Electron 10:383–388

    CAS  Google Scholar 

  130. Zhang L, Ni Y, Wang X, Zhao G (2010) Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta 82:196–201

    CAS  Google Scholar 

  131. Sj K, Jung H, Lee C, Kim MH, Lee Y (2014) Biological application of RuO2 nanorods grown on a single carbon fiber for the real-time direct nitric oxide sensing. Sens Actuators, B 191:298–304

    Google Scholar 

  132. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology: John Wiley & Sons

  133. Abdelwahab AA, Koh WCA, Noh HB, Shim YB (2010) A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: removal of interferences by co-immobilized enzymes. Biosens Bioelectron 26:1080–1086

    CAS  Google Scholar 

  134. Zhang L, Fang Z, Zhao GC, Wei XW (2008) Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. Int J Electrochem Sci 3:746–754

    Google Scholar 

  135. Wang F, Chen XW, Chen ZL (2011) Eletrodeposited nickel oxide on a film of carbon nanotubes for monitoring nitric oxide release from rat kidney and drug samples. Microchim Acta 173:65–72

    CAS  Google Scholar 

  136. Deng X, Wang F, Chen Z (2010) A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues. Talanta 82:1218–1224

    CAS  Google Scholar 

  137. Ting SL, Guo CX, Leong KC, Kim D-H, Li CM, Chen P (2013) Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochim Acta 111:441–446

    CAS  Google Scholar 

  138. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961

    CAS  Google Scholar 

  139. Milsom EV, Novak J, Oyama M, Marken F (2007) Electrocatalytic oxidation of nitric oxide at TiO2–Au nanocomposite film electrodes. Electrochem Commun 9:436–442

    CAS  Google Scholar 

  140. Gutierrez AP, Griveau S, Richard C, Pailleret A, Granados SG, Bedioui F (2009) Hybrid Materials from Carbon Nanotubes, Nickel Tetrasulfonated Phthalocyanine and Thin Polymer Layers for the Selective Electrochemical Activation of Nitric Oxide in Solution. Electroanal 21:2303–2310

    Google Scholar 

  141. Zheng DY, Liu XJ, Zhou D, Hu SS (2012) Sensing of nitric oxide using a glassy carbon electrode modified with an electrocatalytic film composed of dihexadecyl hydrogen phosphate, platinum nanoparticles, and acetylene black. Microchim Acta 176:49–55

    CAS  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Nature Science Foundation of China (Nos. 61301048, 20805035 and 31070885), Social Science Research Fund from the Chinese Ministry of Education (No. 14YJCZH055), Fundamental Research Funds for the Central Universities in China and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Hu or Shengshui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, X., Hu, H., Wang, S. et al. Nanomaterials-based electrochemical sensors for nitric oxide. Microchim Acta 182, 455–467 (2015). https://doi.org/10.1007/s00604-014-1325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1325-3

Keywords

Navigation