Skip to main content
Log in

Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ben-David R (2011) Molecular mapping of powdery mildew resistance genes derived from the Triticum turgidum gene pool. Ph.D. thesis, The University of Haifa, Haifa, Israel

  • Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of powdery mildew resistance gene PmG16, derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 121:499–510

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 117:135–142

    Article  PubMed  CAS  Google Scholar 

  • Bryan G, Collins A, Stephenson P, Orry A, Smith J, Gale M (1997) Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Article  CAS  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  PubMed  CAS  Google Scholar 

  • Du C, Hart GE (1998) Triticum turgidum L. 6A and 6B recombinant substitution lines: extended linkage maps and characterization of residual background alien genetic variation. Theor Appl Genet 96:645–653

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA, Weiner S (2006) Ancient olive DNA in pits: preservation, amplification and sequence analysis. J Archaeol Sci 33:77–88

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Fahima T, Roder M, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  • Fahima T, Roder M, Wendehake V, Kirzhner V, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (2004) Molecular markers for disease resistance: the example wheat. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement (Biotechnology in Agriculture and Forestry), vol 55. Springer, Berlin, pp 353–364

    Chapter  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytologically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Genomics applications in crops, vol 2. Springer, Berlin, pp 1–24

    Chapter  Google Scholar 

  • Gerechter-Amitai ZK, Grama A, Kleitman F (1992) Improvement of cultivated wheat by transfer of the high protein potential and resistance to powdery mildew and yellow rust from wild emmer wheat. A final report 1974–1992, submitted to the Netherlands Ministry for Development Cooperation, The Hague, The Netherlands, pp 62

  • Heyne EG (1959) Registration of improved wheat varieties, XXIII. Agron J 51:689–692

    Article  Google Scholar 

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breed 116:119–122

    Article  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS press, St. Paul, pp 219–238

    Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Reptr 21:1–6

    Article  CAS  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    PubMed  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoelogous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Article  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckmann JS, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer Academic Publishers, Dordrecht, pp 1–13

    Chapter  Google Scholar 

  • Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539

    Article  PubMed  CAS  Google Scholar 

  • Lipps PE, Madden L (1988) Effects of triadimenol seed treatment and tridimefon foliar treatment on powdery mildew epidemics and grain yield of winter cultivars. Plant Dis 72:887–892

    Article  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Nevo E, Yang T (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Mains E, Dietz S (1930) Physiologic forms of barley mildew, Erysiphe graminis hordei Marchal. Phytopathology 20:229–239

    Google Scholar 

  • Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2010) MlAB10: a Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Sci 50:2261–2267

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/. Verified 17 March 2010

  • Mester D, Ronin Y, Minkov D, Nevo E, Korol AB (2003a) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics 165:2269–2282

    PubMed  CAS  Google Scholar 

  • Mester D, Ronin, Hu Y, Peng J, Nevo E, Korol AB (2003b) Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet 107:1102–1112

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by BSA: a rapid method to detect markers in specific genome regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.em Thell). 9. Gene MIZec1 from Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48:811–822

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, p 364

    Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD et al (2004) A chromosome bin map of 16, 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Sandhu D, Gill KS (2002) Gene-containing regions of wheat and the other grass genomes. Plant Physiol 128:803–811

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004a) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Gandon B, Chiquet V, Nicot N, Somers D, Murigneux A, Bernard M (2004b) Wheat génoplante SSR mapping data release: a new set of markers and comprehensive genetic and physical mapping data (http://wheat.pw.usda.gov/ggpages/ssrclub/geneticphysical)

  • Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Article  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    Article  PubMed  CAS  Google Scholar 

  • Xie W (2006) Molecular mapping of powdery mildew resistance genes derived from wild emmer wheat, Triticum dicoccoides Koern. Ph.D. thesis, The University of Haifa, Haifa, Israel

  • Xie W, Ben-David R, Ronin YI, Dinoor A, Xie C, Sun Q, Röder MS, Fahoum A, Fahima T (2011) Suppressed recombination rate on 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed. doi:10.1007/s11032-011-9557-y (in press)

Download references

Acknowledgments

This study was supported by The Israel Science Foundation grants #608/03 and #205/08. We also acknowledge The Israel Science Foundation equipment grants #048/99, #1478/04 and #1719/08. The authors wish to thank J. Dubcovsky for providing the 6BS RSLs, and A. Fahoum and O. Shalish for their skillful assistance in the genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzion Fahima.

Additional information

Communicated by B. Friebe.

First authorship shared by W. Xie and R. Ben-David.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Ben-David, R., Zeng, B. et al. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides . Theor Appl Genet 124, 911–922 (2012). https://doi.org/10.1007/s00122-011-1756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1756-8

Keywords

Navigation