Journal of High Energy Physics

, 2013:89 | Cite as

Investigating the near-criticality of the Higgs boson

  • Dario Buttazzo
  • Giuseppe Degrassi
  • Pier Paolo Giardino
  • Gian F. Giudice
  • Filippo Sala
  • Alberto Salvio
  • Alessandro Strumia
Open Access
Article

Abstract

We extract from data the parameters of the Higgs potential, the top Yukawa coupling and the electroweak gauge couplings with full 2-loop NNLO precision, and we extrapolate the SM parameters up to large energies with full 3-loop NNLO RGE precision. Then we study the phase diagram of the Standard Model in terms of high-energy parameters, finding that the measured Higgs mass roughly corresponds to the minimum values of the Higgs quartic and top Yukawa and the maximum value of the gauge couplings allowed by vacuum metastability. We discuss various theoretical interpretations of the near-criticality of the Higgs mass.

Keywords

Higgs Physics Standard Model Renormalization Group 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).
  4. [4]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).
  5. [5]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002, CERN, Geneva Switzerland (2013).
  6. [6]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013, CERN, Geneva Switzerland (2013).
  7. [7]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  8. [8]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. Krive and A.D. Linde, On the vacuum stability problem in gauge theories, Nucl. Phys. B 117 (1976) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Krasnikov, Restriction of the fermion mass in gauge theories of weak and electromagnetic interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].Google Scholar
  11. [11]
    L. Maiani, G. Parisi and R. Petronzio, Bounds on the number and masses of quarks and leptons, Nucl. Phys. B 136 (1978) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H.D. Politzer and S. Wolfram, Bounds on particle masses in the Weinberg-Salam model, Phys. Lett. B 82 (1979) 242 [Erratum ibid. B 83 (1979) 421] [INSPIRE].
  13. [13]
    P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.D. Linde, Vacuum instability, cosmology and constraints on particle masses in the Weinberg-Salam model, Phys. Lett. B 92 (1980) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Lindner, Implications of triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.B. Arnold, Can the electroweak vacuum be unstable?, Phys. Rev. D 40 (1989) 613 [INSPIRE].ADSGoogle Scholar
  20. [20]
    P.B. Arnold and S. Vokos, Instability of hot electroweak theory: bounds on m H and M t, Phys. Rev. D 44 (1991) 3620 [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Sher, Precise vacuum stability bound in the Standard Model, Phys. Lett. B 317 (1993) 159 [Addendum ibid. B 331 (1994) 448] [hep-ph/9307342] [INSPIRE].
  22. [22]
    G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the Standard Model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.A. Casas, J.R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the Standard Model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.R. Espinosa and M. Quirós, Improved metastability bounds on the Standard Model Higgs mass, Phys. Lett. B 353 (1995) 257 [hep-ph/9504241] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Casas, J. Espinosa and M. Quirós, Standard Model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Schrempp and M. Wimmer, Top quark and Higgs boson masses: interplay between infrared and ultraviolet physics, Prog. Part. Nucl. Phys. 37 (1996) 1 [hep-ph/9606386] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the Standard Model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  29. [29]
    J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B. Feldstein, L.J. Hall and T. Watari, Landscape prediction for the Higgs boson and top quark masses, Phys. Rev. D 74 (2006) 095011 [hep-ph/0608121] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  33. [33]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Datta and S. Raychaudhuri, Vacuum stability constraints and LHC searches for a model with a universal extra dimension, Phys. Rev. D 87 (2013) 035018 [arXiv:1207.0476] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Chakrabortty, M. Das and S. Mohanty, Constraints on TeV scale Majorana neutrino phenomenology from the vacuum stability of the Higgs, Mod. Phys. Lett. A 28 (2013) 1350032 [arXiv:1207.2027] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L.A. Anchordoqui et al., Vacuum stability of Standard Model ++, JHEP 02 (2013) 074 [arXiv:1208.2821] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Masina, Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.J. Chun, H.M. Lee and P. Sharma, Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.J. Chung, A.J. Long and L.-T. Wang, The 125 GeV Higgs and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].ADSGoogle Scholar
  46. [46]
    W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs boson and the type-II seesaw model, JHEP 03 (2013) 150 [Erratum ibid. 05 (2013) 049] [arXiv:1301.3453] [INSPIRE].
  48. [48]
    O. Lebedev and A. Westphal, Metastable electroweak vacuum: implications for inflation, Phys. Lett. B 719 (2013) 415 [arXiv:1210.6987] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H.B. Nielsen, PREdicted the Higgs mass, arXiv:1212.5716 [INSPIRE].
  50. [50]
    A. Kobakhidze and A. Spencer-Smith, Electroweak vacuum (in)stability in an inflationary universe, Phys. Lett. B 722 (2013) 130 [arXiv:1301.2846] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  51. [51]
    Y. Tang, Vacuum stability in the Standard Model, Mod. Phys. Lett. A 28 (2013) 1330002 [arXiv:1301.5812] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    F. Klinkhamer, Standard Model Higgs field and energy scale of gravity, JETP Lett. 97 (2013) 297 [arXiv:1302.1496] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    X.-G. He, H. Phoon, Y. Tang and G. Valencia, Unitarity and vacuum stability constraints on the couplings of color octet scalars, JHEP 05 (2013) 026 [arXiv:1303.4848] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  55. [55]
    F. Jegerlehner, The Standard Model as a low-energy effective theory: what is triggering the Higgs mechanism?, arXiv:1304.7813 [INSPIRE].
  56. [56]
    O. Antipin, M. Gillioz, J. Krog, E. Mølgaard and F. Sannino, Standard Model vacuum stability and Weyl consistency conditions, JHEP 08 (2013) 034 [arXiv:1306.3234] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, arXiv:1307.5193 [INSPIRE].
  58. [58]
    D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    W.E. Caswell, Asymptotic behavior of non-Abelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Jones, Two loop diagrams in Yang-Mills theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    O. Tarasov, A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Larin and J. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. van Ritbergen, J. Vermaseren and S. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  66. [66]
    D. Jones, The two loop β-function for a G 1 × G 2 gauge theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Steinhauser, Higgs decay into gluons up to \( O\left( {\alpha_s^3{G_F}m_t^2} \right) \), Phys. Rev. D 59 (1999) 054005 [hep-ph/9809507] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the Standard Model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar
  71. [71]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Fischler and J. Oliensis, Two loop corrections to the evolution of the Higgs-Yukawa coupling constant, Phys. Lett. B 119 (1982) 385 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  75. [75]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M.-X. Luo and Y. Xiao, Two loop renormalization group equations in the Standard Model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K. Chetyrkin and M. Zoller, β-function for the Higgs self-interaction in the Standard Model at three-loop level, JHEP 04 (2013) 091 [Erratum ibid. 09 (2013) 155] [arXiv:1303.2890] [INSPIRE].
  79. [79]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Higgs self-coupling β-function in the Standard Model at three loops, Nucl. Phys. B 875 (2013) 552 [arXiv:1303.4364] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].ADSGoogle Scholar
  81. [81]
    W. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2)L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].
  82. [82]
    R. Tarrach, The pole mass in perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    K. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( \alpha_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the Standard Model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Sirlin and R. Zucchini, Dependence of the quartic coupling H m on M H and the possible onset of new physics in the Higgs sector of the Standard Model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    W.E. Caswell and F. Wilczek, On the gauge dependence of renormalization group parameters, Phys. Lett. B 49 (1974) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    T. Muta, Foundations of quantum chromodynamics, World Scientific, Singapore (2010), pg. 192.MATHGoogle Scholar
  90. [90]
    D. Atkinson and M. Fry, Should one truncate the electron selfenergy?, Nucl. Phys. B 156 (1979) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Breckenridge, M. Lavelle and T.G. Steele, The Nielsen identities for the two point functions of QED and QCD, Z. Phys. C 65 (1995) 155 [hep-th/9407028] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A.S. Kronfeld, The perturbative pole mass in QCD, Phys. Rev. D 58 (1998) 051501 [hep-ph/9805215] [INSPIRE].ADSGoogle Scholar
  93. [93]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, 2012 update of the combination of CDF and D0 results for the mass of the W boson, FERMILAB-TM-2532-E, Fermilab, Batavia U.S.A. (2012) [arXiv:1204.0042] [INSPIRE].
  94. [94]
    ALEPH, DELPHI, L3, OPAL and LEP Electroweak Working Group collaborations, A combination of preliminary electroweak measurements and constraints on the Standard Model, 2006, CERN-PH-EP-2006-042, CERN, Geneva Switzerland (2006) [hep-ex/0612034] [INSPIRE].
  95. [95]
    2012 Particle Data Group average, http://pdg.lbl.gov/.
  96. [96]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb−1 of data, arXiv:1107.5255 [INSPIRE].
  97. [97]
    CMS collaboration, CMS top physics website, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP.
  98. [98]
    CMS collaboration, talks at the Moriond 2013 conference, La Thuile Italy March 9-16 2013.Google Scholar
  99. [99]
    ATLAS collaboration, ATLAS top physics website, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults.
  100. [100]
    MuLan collaboration, V. Tishchenko et al., Detailed report of the MuLan measurement of the positive muon lifetime and determination of the Fermi constant, Phys. Rev. D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].Google Scholar
  101. [101]
    S. Bethke, World summary of α s (2012), Nucl. Phys. Proc. Suppl. 234 (2013) 229 [arXiv:1210.0325] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    T. Kinoshita and A. Sirlin, Radiative corrections to Fermi interactions, Phys. Rev. 113 (1959) 1652 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    T. van Ritbergen and R.G. Stuart, On the precise determination of the Fermi coupling constant from the muon lifetime, Nucl. Phys. B 564 (2000) 343 [hep-ph/9904240] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  105. [105]
    R. Mertig and R. Scharf, TARCER: a Mathematica program for the reduction of two loop propagator integrals, Comput. Phys. Commun. 111 (1998) 265 [hep-ph/9801383] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  106. [106]
    O. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    M. Awramik, M. Czakon, A. Onishchenko and O. Veretin, Bosonic corrections to Δr at the two loop level, Phys. Rev. D 68 (2003) 053004 [hep-ph/0209084] [INSPIRE].ADSGoogle Scholar
  109. [109]
    S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S.P. Martin and D.G. Robertson, TSIL: a program for the calculation of two-loop self-energy integrals, Comput. Phys. Commun. 174 (2006) 133 [hep-ph/0501132] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  111. [111]
    B.A. Kniehl and A. Sirlin, Pole mass, width and propagators of unstable Fermions, Phys. Rev. D 77 (2008) 116012 [arXiv:0801.0669] [INSPIRE].ADSGoogle Scholar
  112. [112]
    F. Jegerlehner, M.Y. Kalmykov and B.A. Kniehl, On the difference between the pole and the MS-bar masses of the top quark at the electroweak scale, Phys. Lett. B 722 (2013) 123 [arXiv:1212.4319] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  113. [113]
    S.P. Martin, Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings, arXiv:1310.7553 [INSPIRE].
  114. [114]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  115. [115]
    LEP Electroweak Working Group webpage, http://lepewwg.web.cern.ch/.
  116. [116]
    C. Froggatt and H.B. Nielsen, Standard Model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    C. Froggatt, H.B. Nielsen and Y. Takanishi, Standard Model Higgs boson mass from borderline metastability of the vacuum, Phys. Rev. D 64 (2001) 113014 [hep-ph/0104161] [INSPIRE].ADSGoogle Scholar
  118. [118]
    C. Burgess, V. Di Clemente and J. Espinosa, Effective operators and vacuum instability as heralds of new physics, JHEP 01 (2002) 041 [hep-ph/0201160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  119. [119]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to Standard Model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  120. [120]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    C. Ford, I. Jack and D. Jones, The Standard Model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].
  123. [123]
    L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  124. [124]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  125. [125]
    M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    L.E. Ibánez and I. Valenzuela, The Higgs mass as a signature of heavy SUSY, JHEP 05 (2013) 064 [arXiv:1301.5167] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    A. Hebecker, A.K. Knochel and T. Weigand, The Higgs mass from a string-theoretic perspective, Nucl. Phys. B 874 (2013) 1 [arXiv:1304.2767] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  129. [129]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A. Hebecker, A.K. Knochel and T. Weigand, A shift symmetry in the Higgs sector: experimental hints and stringy realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    M. Redi and A. Strumia, Axion-Higgs unification, JHEP 11 (2012) 103 [arXiv:1208.6013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  133. [133]
    G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  134. [134]
    P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    J.F. Donoghue, K. Dutta and A. Ross, Quark and lepton masses and mixing in the landscape, Phys. Rev. D 73 (2006) 113002 [hep-ph/0511219] [INSPIRE].ADSGoogle Scholar
  137. [137]
    L.J. Hall, M.P. Salem and T. Watari, Quark and lepton masses from Gaussian landscapes, Phys. Rev. Lett. 100 (2008) 141801 [arXiv:0707.3444] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    G.W. Gibbons, S. Gielen, C. Pope and N. Turok, Measures on mixing angles, Phys. Rev. D 79 (2009) 013009 [arXiv:0810.4813] [INSPIRE].ADSGoogle Scholar
  139. [139]
    G.F. Giudice, G. Perez and Y. Soreq, Flavor beyond the standard universe, arXiv:1207.4861 [INSPIRE].
  140. [140]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  141. [141]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the Standard Model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].ADSGoogle Scholar
  142. [142]
    I.Y. Kobzarev, L. Okun and M. Voloshin, Bubbles in metastable vacuum, Sov. J. Nucl. Phys. 20 (1975) 644 [Yad. Fiz. 20 (1974) 1229] [INSPIRE].
  143. [143]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  144. [144]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  145. [145]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Dario Buttazzo
    • 1
    • 2
  • Giuseppe Degrassi
    • 3
  • Pier Paolo Giardino
    • 1
    • 4
  • Gian F. Giudice
    • 1
  • Filippo Sala
    • 2
    • 5
  • Alberto Salvio
    • 2
    • 6
  • Alessandro Strumia
    • 4
  1. 1.CERN, Theory DivisionGeneva 23Switzerland
  2. 2.Scuola Normale Superiore and INFN, sezione di PisaPisaItaly
  3. 3.Dipartimento di Matematica e FisicaUniversità di Roma Tre and INFN, sezione di Roma TreRomeItaly
  4. 4.Dipartimento di FisicaUniversità di Pisa and INFN, sezione di PisaPisaItaly
  5. 5.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyUnited States
  6. 6.Departamento de Física TeóricaUniversidad Autónoma de Madrid and Instituto de Física Teórica IFT-UAM/CSICMadridSpain

Personalised recommendations