Skip to main content
Log in

Planck scale boundary conditions and the Higgs mass

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If the LHC does only find a Higgs boson in the low mass region and no other new physics, then one should reconsider scenarios where the Standard Model with three right-handed neutrinos is valid up to Planck scale. We assume in this spirit that the Standard Model couplings are remnants of quantum gravity which implies certain generic boundary conditions for the Higgs quartic coupling at Planck scale. This leads to Higgs mass predictions at the electroweak scale via renormalization group equations. We find that several physically well motivated conditions yield a range of Higgs masses from 127 − 142 GeV. We also argue that a random quartic Higgs coupling at the Planck scale favours M H > 150 GeV, which is clearly excluded. We discuss also the prospects for differentiating different boundary conditions imposed for λ(M pl) at the LHC. A striking example is M H  = 127 ± 5 GeV corresponding to λ(M pl) = 0, which would imply that the quartic Higgs coupling at the electroweak scale is entirely radiatively generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = 7\,TeV \) at the LHC, Technical Report ATLAS-CONF-2011-157, CERN, Geneva Switzerland (2011).

  2. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  3. S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].

    ADS  Google Scholar 

  4. E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

    ADS  Google Scholar 

  5. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  6. G. ’t Hooft et al., Recent developments in gauge theories, in proceedings of Cargese Summer Institute on Recent Developments in Gauge Theories, Cargese France (1979) [NATO Adv. Study Inst. Ser. B 59 (1980) 1].

  7. M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  8. K.A. Meissner and H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260 [arXiv:0710.2840] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?, arXiv:0708.3550 [INSPIRE].

  10. W.A. Bardeen, On naturalness in the standard model, presented at 1995 Ontake Summer Institute, Ontake Mountain Japan, Aug 27-Sep 2 1995, FERMILAB-CONF-95-391-T.

  11. M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab Collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    ADS  Google Scholar 

  12. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Google Scholar 

  14. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Froggatt and H.B. Nielsen, Standard model criticality prediction: Top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

    ADS  Google Scholar 

  16. J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    ADS  Google Scholar 

  17. J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

    ADS  Google Scholar 

  18. G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  19. M. Chaichian, R. Gonzalez Felipe and K. Huitu, On quadratic divergences and the Higgs mass, Phys. Lett. B 363 (1995) 101 [hep-ph/9509223] [INSPIRE].

    ADS  Google Scholar 

  20. M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  21. R. Decker and J. Pestieau, Lepton selfmass, Higgs scalar and heavy quark masses, Lett. Nuovo Cim. 29 (1980) 560 [INSPIRE].

    Article  Google Scholar 

  22. T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].

    ADS  Google Scholar 

  23. M. Einhorn and D. Jones, The effective potential and quadratic divergences, Phys. Rev. D 46 (1992) 5206 [INSPIRE].

    ADS  Google Scholar 

  24. C.F. Kolda and H. Murayama, The Higgs mass and new physics scales in the minimal standard model, JHEP 07 (2000) 035 [hep-ph/0003170] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].

  26. D.Y. Bardin et al., ZFITTER v.6.21: A semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. A. Arbuzov et al., ZFITTER: A semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].

    Article  ADS  Google Scholar 

  28. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    Google Scholar 

  29. Tevatron Electroweak Working Group, for the CDF and D0 collaboration, M. Lancaster, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  30. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].

    ADS  Google Scholar 

  31. M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, arXiv:1112.3022 [INSPIRE].

  33. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  35. R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the standard model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].

    ADS  Google Scholar 

  36. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Google Scholar 

  37. F. Jegerlehner and M. Kalmykov, O(ααs) relation between pole- and MS-bar mass of the t-quark, Acta Phys. Polon. B 34 (2003) 5335 [hep-ph/0310361] [INSPIRE].

    ADS  Google Scholar 

  38. J. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].

    ADS  Google Scholar 

  39. A. Hoang, What Top Mass is Measured at the LHC?, talk given at Strong interactions: From methods to structures, Bad Honnef Germany,12-16 February 2011, http://www.tp2.ruhr-uni-bochum.de/forschung/vortraege/workshops/bh11/talks/AHoang.pdf.

  40. J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. Froggatt, H.B. Nielsen and Y. Takanishi, Standard model Higgs boson mass from borderline metastability of the vacuum, Phys. Rev. D 64 (2001) 113014 [hep-ph/0104161] [INSPIRE].

    ADS  Google Scholar 

  43. M. Hohlfeld, On the determination of Higgs parameters in the ATLAS experiment at the LHC, Technical Report ATL-PHYS-2001-004, CERN, Geneva Switzerland (2000).

    Google Scholar 

  44. CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

    ADS  Google Scholar 

  45. A. De Roeck and G. Polesello, Higgs searches at the LHC, C. R. Phys. 8 (2007) 1078.

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, Technical Report ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).

    Google Scholar 

  47. CMS collaboration, Combination of SM Higgs searches, Technical Report PAS-HIG-11-032, CERN, Geneva Switzerland (2011).

    Google Scholar 

  48. M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawacouplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  51. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  52. K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

    ADS  Google Scholar 

  53. A. Sirlin and R. Zucchini, Dependence of the quartic coupling h(M) on m(H) and the possible onset of new physics in the Higgs sector of the standard model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Holthausen.

Additional information

ArXiv ePrint: 1112.2415

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holthausen, M., Lim, K.S. & Lindner, M. Planck scale boundary conditions and the Higgs mass. J. High Energ. Phys. 2012, 37 (2012). https://doi.org/10.1007/JHEP02(2012)037

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)037

Keywords

Navigation