Skip to main content
Log in

Unitarity and vacuum stability constraints on the couplings of color octet scalars

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recent discovery of a 126 GeV boson at the LHC will be followed by a detailed examination of its couplings in order to determine whether this particle is the Higgs boson of the standard model or one of many particles of an extended scalar sector. One such extension with a rich phenomenology consists of a color octet electroweak doublet scalar. The most general renormalizable scalar potential contains twelve new parameters and it is therefore desirable to constrain them. We present theoretical constraints on these parameters obtained by requiring perturbative unitarity for two-to-two scalar scattering amplitudes at high energy and vacuum stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].

    ADS  Google Scholar 

  5. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y. Tang, Vacuum stability in the standard model, arXiv:1301.5812 [INSPIRE].

  8. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  10. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  11. W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Kannike, Vacuum stability conditions from copositivity criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].

    ADS  Google Scholar 

  14. W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].

    ADS  Google Scholar 

  15. S. Iso and Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scale - In view of the hierarchy problem -, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

  16. K. Allison, Dark matter, singlet extensions of the nuMSM and symmetries, arXiv:1210.6852 [INSPIRE].

  17. G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Z 3 scalar singlet dark matter, JCAP 01 (2013) 022 [arXiv:1211.1014] [INSPIRE].

    Article  Google Scholar 

  18. H.H. Patel and M.J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, arXiv:1212.5652 [INSPIRE].

  19. W. Chao, J.-H. Zhang and Y. Zhang, Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model, arXiv:1212.6272 [INSPIRE].

  20. P.B. Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs boson and the type-II seesaw model, JHEP 03 (2013) 150 [arXiv:1301.3453] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Goudelis, B. Herrmann and O. Stal, Dark matter in the inert doublet model after the discovery of a Higgs-like boson at the LHC, arXiv:1303.3010 [INSPIRE].

  22. R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].

    ADS  Google Scholar 

  23. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].

    ADS  Google Scholar 

  25. X.-G. He, Y. Tang and G. Valencia, Higgs phenomenology in the presence of a scalar color octet, in preparation.

  26. C. Burgess, M. Trott and S. Zuberi, Light octet scalars, a heavy Higgs and minimal flavour violation, JHEP 09 (2009) 082 [arXiv:0907.2696] [INSPIRE].

    Article  ADS  Google Scholar 

  27. L.M. Carpenter and S. Mantry, Color-octet, electroweak-doublet scalars and the CDF dijet anomaly, Phys. Lett. B 703 (2011) 479 [arXiv:1104.5528] [INSPIRE].

    ADS  Google Scholar 

  28. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  29. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

    ADS  Google Scholar 

  30. J. Bulava, P. Gerhold, K. Jansen, J. Kallarackal, B. Knippschild et al., Higgs-Yukawa model in chirally-invariant lattice field theory, Adv. High Energy Phys. 2013 (2013) 875612 [arXiv:1210.1798] [INSPIRE].

    Google Scholar 

  31. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  32. I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, arXiv:1209.0393 [INSPIRE].

  33. M.S. Chanowitz, M. Furman and I. Hinchliffe, Weak interactions of ultraheavy fermions, Phys. Lett. B 78 (1978) 285 [INSPIRE].

    ADS  Google Scholar 

  34. W.J. Marciano, G. Valencia and S. Willenbrock, Renormalization group improved unitarity bounds on the Higgs boson and top quark masses, Phys. Rev. D 40 (1989) 1725 [INSPIRE].

    ADS  Google Scholar 

  35. M.I. Gresham and M.B. Wise, Color octet scalar production at the LHC, Phys. Rev. D 76 (2007) 075003 [arXiv:0706.0909] [INSPIRE].

    ADS  Google Scholar 

  36. M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].

    ADS  Google Scholar 

  37. T. Enkhbat, X.-G. He, Y. Mimura and H. Yokoya, Colored scalars and the CDF W +dijet excess, JHEP 02 (2012) 058 [arXiv:1105.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.M. Arnold and B. Fornal, Color octet scalars and high pT four-jet events at LHC, Phys. Rev. D 85 (2012) 055020 [arXiv:1112.0003] [INSPIRE].

    ADS  Google Scholar 

  39. X.-G. He and G. Valencia, An extended scalar sector to address the tension between a fourth generation and Higgs searches at the LHC, Phys. Lett. B 707 (2012) 381 [arXiv:1108.0222] [INSPIRE].

    ADS  Google Scholar 

  40. B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].

    ADS  Google Scholar 

  41. Y. Bai, J. Fan and J.L. Hewett, Hiding a heavy Higgs boson at the 7 TeV LHC, JHEP 08 (2012) 014 [arXiv:1112.1964] [INSPIRE].

    Article  ADS  Google Scholar 

  42. I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs uncovering light scalar remnants of high scale matter unification, JHEP 11 (2012) 130 [arXiv:1208.1266] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].

    ADS  Google Scholar 

  44. X.-G. He, G. Valencia and H. Yokoya, Color-octet scalars and potentially large CP-violation at the LHC, JHEP 12 (2011) 030 [arXiv:1110.2588] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Higgs couplings beyond the standard model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Cao, P. Wan, J.M. Yang and J. Zhu, The SM extension with color-octet scalars: diphoton enhancement and global fit of LHC Higgs data, arXiv:1303.2426 [INSPIRE].

  48. S. Bertolini, L. Di Luzio and M. Malinsky, Light color octet scalars in the minimal SO(10) grand unification, arXiv:1302.3401 [INSPIRE].

  49. T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

    ADS  Google Scholar 

  50. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang He.

Additional information

ArXiv ePrint: 1303.4848

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, XG., Phoon, H., Tang, Y. et al. Unitarity and vacuum stability constraints on the couplings of color octet scalars. J. High Energ. Phys. 2013, 26 (2013). https://doi.org/10.1007/JHEP05(2013)026

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)026

Keywords

Navigation