Skip to main content
Log in

The Higgs mass as a signature of heavy SUSY

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the mass of the Higgs particle in a scheme in which SUSY is broken at a large scale M SS well above the electroweak scale M EW. Below M SS one assumes one is just left with the SM with a fine-tuned Higgs potential. Under standard unification assumptions one can compute the mass of the Higgs particle as a function of the SUSY breaking scale M SS. For M SS ≳ 1010 GeV one obtains m H = 126 ± 3 GeV, consistent with CMS and ATLAS results. For lower values of M SS the values of the Higgs mass tend to those of a fine-tuned MSSM with m H ≲ 130 GeV. These results support the idea that the measured value of the Higgs mass at LHC may be considered as indirect evidence for the existence of SUSY at some (not necessarily low) mass scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. L.E. Ibáñez, F. Marchesano, D. Regalado and I. Valenzuela, The intermediate scale MSSM, the Higgs mass and F-theory unification, JHEP 07 (2012) 195 [arXiv:1206.2655] [INSPIRE].

    Article  ADS  Google Scholar 

  4. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  5. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  7. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  10. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119–125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    ADS  Google Scholar 

  14. J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

    ADS  Google Scholar 

  15. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  17. N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, (No) eternal inflation and precision Higgs physics, JHEP 03 (2008) 075 [arXiv:0801.2399] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Google Scholar 

  20. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65–89] [hep-ph/0406088] [INSPIRE].

  22. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    Article  ADS  Google Scholar 

  24. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Liu, A supersymmetry model of leptons, Phys. Lett. B 609 (2005) 111 [hep-ph/0501129] [INSPIRE].

    ADS  Google Scholar 

  26. C. Liu and Z.-h. Zhao, θ 13 and the Higgs mass from high scale supersymmetry, Commun. Theor. Phys. 59 (2013) 467 [arXiv:1205.3849] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Unwin, A sharp 141 GeV Higgs prediction from environmental selection, Phys. Rev. D 86 (2012) 095002 [arXiv:1110.0470] [INSPIRE].

    ADS  Google Scholar 

  28. A. Hebecker, A.K. Knochel and T. Weigand, A shift symmetry in the Higgs sector: experimental hints and stringy realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  30. L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  32. M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  35. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  36. L.E. Ibáñez and A. Uranga, String theory and particle physics. An introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).

    MATH  Google Scholar 

  37. F. del Aguila and L.E. Ibáñez, Higgs bosons in SO(10) and partial unification, Nucl. Phys. B 177 (1981) 60 [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Dimopoulos and H. Georgi, Extended survival hypothesis and fermion masses, Phys. Lett. B 140 (1984) 67 [INSPIRE].

    ADS  Google Scholar 

  39. CDF, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

    ADS  Google Scholar 

  40. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  43. L.E. Ibáñez and G.G. Ross, Low-energy predictions in supersymmetric grand unified theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].

    ADS  Google Scholar 

  44. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  45. L.E. Ibáñez, C. Muñoz and S. Rigolin, Aspect of type-I string phenomenology, Nucl. Phys. B 553 (1999) 43 [hep-ph/9812397] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Blumenhagen, D. Lüst and S. Stieberger, Gauge unification in supersymmetric intersecting brane worlds, JHEP 07 (2003) 036 [hep-th/0305146] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Y.-J. Huo, T. Li and D.V. Nanopoulos, Canonical gauge coupling unification in the standard model with high-scale supersymmetry breaking, JHEP 09 (2011) 003 [arXiv:1011.0964] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Dijkstra, L. Huiszoon and A. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. L.E. Ibáñez, From strings to the LHC: Les Houches lectures on string phenomenology, arXiv:1204.5296 [INSPIRE].

  53. G.K. Leontaris, Aspects of F-theory GUTs, PoS(CORFU2011) 095 [arXiv:1203.6277] [INSPIRE].

  54. A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, arXiv:1212.0555 [INSPIRE].

  55. R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  56. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  57. L.E. Ibáñez, C. Lopez and C. Muñoz, The low-energy supersymmetric spectrum according to N = 1 supergravity guts, Nucl. Phys. B 256 (1985) 218 [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Sirlin and R. Zucchini, Dependence of the quartic coupling H(m) on M(h) and the possible onset of new physics in the Higgs sector of the standard MODEL, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

    Article  ADS  Google Scholar 

  59. L. Aparicio, D. Cerdeno and L. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [INSPIRE].

    Article  ADS  Google Scholar 

  60. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D. Bennett, H.B. Nielsen and I. Picek, Understanding fine structure constants and three generations, Phys. Lett. B 208 (1988) 275 [INSPIRE].

    ADS  Google Scholar 

  62. C. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

    ADS  Google Scholar 

  63. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Google Scholar 

  64. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Chatzistavrakidis, E. Erfani, H.P. Nilles and I. Zavala, Axiology, JCAP 09 (2012) 006 [arXiv:1207.1128] [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Giudice, R. Rattazzi and A. Strumia, Unificaxion, Phys. Lett. B 715 (2012) 142 [arXiv:1204.5465] [INSPIRE].

    ADS  Google Scholar 

  67. ADMX collaboration, S. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Valenzuela.

Additional information

ArXiv ePrint: 1301.5167

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibáñez, L.E., Valenzuela, I. The Higgs mass as a signature of heavy SUSY. J. High Energ. Phys. 2013, 64 (2013). https://doi.org/10.1007/JHEP05(2013)064

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)064

Keywords

Navigation