Skip to main content
Log in

A shift symmetry in the Higgs sector: experimental hints and stringy realizations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs sector. More specifically, the Higgs mass range suggested by recent LHC data extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing quartic Higgs coupling at a UV scale between 106 and 1018 GeV. Such a small value of λ can be understood in terms of models with high-scale SUSY breaking if the Kähler potential possesses a shift symmetry, i.e., if it depends on H u and H d only in the combination (\({H_u} + {\overline H_d}\)). This symmetry is known to arise rather naturally in certain heterotic compactifications. We suggest that such a structure of the Higgs Kähler potential is common in a wider class of string constructions, including intersecting D7- and D6-brane models and their extensions to F-theory or M- theory. The latest LHC data may thus be interpreted as hinting to a particular class of compactifications which possess this shift symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, An update to the combined search for the standard model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = {7}\;TeV\), ATLAS-CONF-2012-019 (2012).

  2. CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008 (2012).

  3. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  4. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Froggatt, H.B. Nielsen and Y. Takanishi, Standard model Higgs boson mass from borderline metastability of the vacuum, Phys. Rev. D 64 (2001) 113014 [hep-ph/0104161] [INSPIRE].

    ADS  Google Scholar 

  11. I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass from gauge-Higgs unification, Phys. Lett. B 655 (2007) 257 [arXiv:0705.3035] [INSPIRE].

    Article  ADS  Google Scholar 

  12. I. Gogoladze, N. Okada and Q. Shafi, Window for Higgs boson mass from gauge-Higgs unification, Phys. Lett. B 659 (2008) 316 [arXiv:0708.2503] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  14. N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, (No) eternal inflation and precision Higgs physics, JHEP 03 (2008) 075 [arXiv:0801.2399] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Wetterich, Where to look for solving the gauge hierarchy problem?, arXiv:1112.2910 [INSPIRE].

  18. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Unwin, A sharp 141 GeV Higgs prediction from environmental selection, arXiv:1110.0470 [INSPIRE].

  26. G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].

    ADS  Google Scholar 

  28. G. Lopes Cardoso, D. Lüst and T. Mohaupt, Moduli spaces and target space duality symmetries in (0, 2) Z(N) orbifold theories with continuous Wilson lines, Nucl. Phys. B 432 (1994) 68 [hep-th/9405002] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I. Antoniadis, E. Gava, K. Narain and T. Taylor, Effective μ term in superstring theory, Nucl. Phys. B 432 (1994) 187 [hep-th/9405024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Brignole, L.E. Ibáñez, C. Muñoz and C. Scheich, Some issues in soft SUSY breaking terms from dilaton/moduli sectors, Z. Phys. C 74 (1997) 157 [hep-ph/9508258] [INSPIRE].

    Google Scholar 

  31. A. Brignole, L.E. Ibáñez and C. Muñoz, Orbifold induced μ term and electroweak symmetry breaking, Phys. Lett. B 387 (1996) 769 [hep-ph/9607405] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, hep-ph/9707209 [INSPIRE].

  33. K.-W. Choi et al., Electroweak symmetry breaking in supersymmetric gauge Higgs unification models, JHEP 02 (2004) 037 [hep-ph/0312178] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Hebecker, J. March-Russell and R. Ziegler, Inducing the μ and the Bμ term by the radion and the 5D Chern-Simons term, JHEP 08 (2009) 064 [arXiv:0801.4101] [INSPIRE].

    Article  ADS  Google Scholar 

  35. F. Brummer, S. Fichet, A. Hebecker and S. Kraml, Phenomenology of supersymmetric gauge-Higgs unification, JHEP 08 (2009) 011 [arXiv:0906.2957] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Brummer, R. Kappl, M. Ratz and K. Schmidt-Hoberg, Approximate R-symmetries and the μ term, JHEP 04 (2010) 006 [arXiv:1003.0084] [INSPIRE].

    Article  ADS  Google Scholar 

  37. F. Brummer, S. Fichet, S. Kraml and R.K. Singh, On SUSY GUTs with a degenerate Higgs mass matrix, JHEP 08 (2010) 096 [arXiv:1007.0321] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L.E. Ibáñez, H.P. Nilles and F. Quevedo, Reducing the rank of the gauge group in orbifold compactifications of the heterotic string, Phys. Lett. B 192 (1987) 332 [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Hebecker and M. Trapletti, Gauge unification in highly anisotropic string compactifications, Nucl. Phys. B 713 (2005) 173 [hep-th/0411131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. L.J. Dixon, V. Kaplunovsky and J. Louis, On effective field theories describing (2, 2) vacua of the heterotic string, Nucl. Phys. B 329 (1990) 27 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Honecker and M. Trapletti, Merging heterotic orbifolds and K3 compactifications with line bundles, JHEP 01 (2007) 051 [hep-th/0612030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Groot Nibbelink, M. Trapletti and M. Walter, Resolutions of C n /Z n orbifolds, their U(1) bundles and applications to string model building, JHEP 03 (2007) 035 [hep-th/0701227] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  48. G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five-dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [INSPIRE].

  52. X. Wen and E. Witten, World sheet instantons and the Peccei-Quinn symmetry, Phys. Lett. B 166 (1986) 397 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Dine, N. Seiberg, X. Wen and E. Witten, Nonperturbative effects on the string world sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. S. Kachru, S.H. Katz, A.E. Lawrence and J. McGreevy, Open string instantons and superpotentials, Phys. Rev. D 62 (2000) 026001 [hep-th/9912151] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Arends, K. Heimpel, C. Schick et al., work in progress.

  58. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, arXiv:1112.4854 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Knochel.

Additional information

ArXiv ePrint: 1204.2551v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebecker, A., Knochel, A.K. & Weigand, T. A shift symmetry in the Higgs sector: experimental hints and stringy realizations. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP06(2012)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)093

Keywords

Navigation