Skip to main content
Log in

Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study constraints from perturbativity and vacuum stability as well as the EWPD in the type II seesaw model. As a result, we can put stringent limits on the Higgs triplet couplings depending on the cut-off scale. The EWPD tightly constrain the Higgs triplet mass splitting to be smaller than 40 GeV. Analyzing the Higgs-to-diphoton rate in the allowed parameter region, we show a possible enhancement by up to 100 % and 50 % for the cut-off scale of 100 TeV and 1019 GeV, respectively, if the doubly charged Higgs boson mass is as low as 100 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    ADS  Google Scholar 

  4. J. Schechter and J. Valle, Neutrino masses in SU(2)× U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  5. T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2)× U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  6. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, S. Chatrchyan et al., A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7\;TeV \) arXiv:1207.2666.

  8. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].

    ADS  Google Scholar 

  9. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  12. M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    ADS  Google Scholar 

  13. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  15. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, arXiv:1209.0393 [INSPIRE].

  17. A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].

    ADS  Google Scholar 

  18. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II seesaw model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].

    ADS  Google Scholar 

  20. A. Akeroyd and S. Moretti, Enhancement of H to γγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  21. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  23. C.-W. Chiang, K. Yagyu and K. Yagyu, Higgs boson decays to γγ andin models with Higgs extensions, arXiv:1207.1065 [INSPIRE].

  24. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)P Q -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  25. A. Alves, A. Dias, E.R. Barreto, C. de S. Pires, F.S. Queiroz, et al., Explaining the Higgs decays at the LHC with an extended electroweak model, arXiv:1207.3699 [INSPIRE].

  26. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, arXiv:1207.4235 [INSPIRE].

  27. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].

  28. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ taste like vanilla new physics?, arXiv:1207.5254 [INSPIRE].

  29. A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, arXiv:1207.6596 [INSPIRE].

  30. J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, arXiv:1207.7062 [INSPIRE].

  31. I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs uncovering light scalar remnants of high scale matter unification, arXiv:1208.1266 [INSPIRE].

  32. K. Schmidt-Hoberg and F. Staub, Enhanced h → γγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g−2,arXiv:1208.2973[INSPIRE].

  34. K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, arXiv:1208.3748 [INSPIRE].

  35. Y. Cai, W. Chao and S. Yang, Scalar septuplet dark matter and enhanced h → γγ decay rate, arXiv:1208.3949 [INSPIRE].

  36. L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of H → γγ in the Higgs triplet model plus a scalar dark matter, arXiv:1209.0376 [INSPIRE].

  37. L3 collaboration, P. Achard et al., Search for doubly charged Higgs bosons at LEP, Phys. Lett. B 576 (2003) 18 [hep-ex/0309076] [INSPIRE].

    ADS  Google Scholar 

  38. CDF collaboration, D. Acosta et al., Search for doubly-charged Higgs bosons decaying to dileptons in \( p\bar{p} \) collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. Lett. 93 (2004) 221802 [hep-ex/0406073] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D0 collaboration, V. Abazov et al., Search for doubly-charged Higgs boson pair production in the decay to μ+μ+μμ in \( p\bar{p} \) collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. Lett. 93 (2004) 141801 [hep-ex/0404015] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D0 collaboration, V.M. Abazov et al., Search for doubly-charged Higgs boson pair production in pp collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. Lett. 108 (2012) 021801 [arXiv:1106.4250] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E.J. Chun and P. Sharma, Same-sign tetra-leptons from type II seesaw, JHEP 08 (2012) 162 [arXiv:1206.6278] [INSPIRE].

    Article  ADS  Google Scholar 

  42. P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino masses and the CERN LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].

    ADS  Google Scholar 

  43. C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].

    ADS  Google Scholar 

  44. I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].

    ADS  Google Scholar 

  45. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. Peyranere, et al., The Higgs potential in the type II seesaw model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].

    ADS  Google Scholar 

  46. M.A. Schmidt, Renormalization group evolution in the type-I+ II seesaw model, Phys. Rev. D 76 (2007) 073010 [Erratum ibid. D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].

    ADS  Google Scholar 

  47. W. Chao and H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev. D 75 (2007) 033003 [hep-ph/0611323] [INSPIRE].

    ADS  Google Scholar 

  48. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    Article  ADS  Google Scholar 

  49. L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev. D 49 (1994) 1409 [hep-ph/9309262] [INSPIRE].

    ADS  Google Scholar 

  50. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, arXiv:1209.2716 [INSPIRE].

  51. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, E.J., Lee, H.M. & Sharma, P. Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models. J. High Energ. Phys. 2012, 106 (2012). https://doi.org/10.1007/JHEP11(2012)106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)106

Keywords

Navigation