Skip to main content
Log in

Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals

  • Topical Issue
  • Published:
Central European Journal of Geosciences

Abstract

Melilitolites of the Umbria Latium Ultra-alkaline District display a complete crystallisation sequence of peculiar, late-stage mineral phases and hydrothermal/cement minerals, analogous to fractionated mineral associations from the Kola Peninsula. This paper summarises 20 years of research which has resulted in the identification of a large number of mineral species, some very rare or completely new and some not yet classified. The progressive increasing alkalinity of the residual liquid allowed the formation of Zr-Ti phases and further delhayelitemacdonaldite mineral crystallisation in the groundmass. The presence of leucite and kalsilite in the igneous assemblage is unusual and gives a kamafugitic nature to the rocks. Passage to non-igneous temperatures (T<600 °C) is marked by the metastable reaction and formation of a rare and complex zeolite association (T<300 °C). Circulation of low-temperature (T<100 °C) K-Ca-Ba-CO2-SO2-fluids led to the precipitation of sulphates and hydrated and/or hydroxylated silicate-sulphate-carbonates. As a whole, this mineral assemblage can be considered typical of ultra-alkaline carbonatitic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoppa F., Lavecchia G., Late Pleistocene ultraalkaline magmatic activity in the Umbria-Latium region (Italy): An overview. J. Volcanol. Geoth. Res., 1992, 52, 277–293

    Article  Google Scholar 

  2. Stoppa F., Scordari F., Mesto E., Sharygin V.V., Bortolozzi G., Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy. Cent. Eur. J. Geosci., 2010, 2, 175–187

    Article  Google Scholar 

  3. Avanzinelli R., Lustrino M., Mattei M., Melluso L., Conticelli S., Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: the role of carbonated pelitic vs. pelitic sediment recycling at destructive plate margin. Lithos, 2009, 113, 213–227

    Article  Google Scholar 

  4. Bell K., Lavecchia G., Rosatelli G., Cenozoic Italian magmatism — Isotope constraints for possible plumerelated activity. Journal of South American Earth Sciences, 2013, 41, 22–40

    Article  Google Scholar 

  5. Stoppa F., Woolley A.R., The Italian carbonatites: field occurrence, petrology and regional significance. Mineral. Petrol., 1997, 59, 43–67

    Article  Google Scholar 

  6. Lavecchia G., Stoppa F., Creati N., Carbonatites and kamafugites in Italy: mantle-derived rocks that challenge subduction. In: Scalera, G., Lavecchia, G. (Eds.), Frontiers in earth sciences: new ideas and interpretation, Ann. Geophys-Italy, 2006, 49(1), 389–402

    Google Scholar 

  7. Lavecchia G., Stoppa F., The tectonic significance of Italian magmatism: an alternative view to the popular interpretation. Terra Nova, 1996, 8, 435–446

    Article  Google Scholar 

  8. Dunworth E.A., Bell K., Melilitolites: a new scheme of classification. Can. Mineral., 1998, 36, 895–903

    Google Scholar 

  9. Yoder H.S., Akermanite-Co2: Relationships of melilite-bearing rocks to kimberlites. Carnegie Institute Geophysical Lab., 1973, 72, 449–467

    Google Scholar 

  10. Gupta V.K., Gupta A.K. Phase relations in the system leucite — akermanite — albite — SiO2 under one atmospheric pressure. Synthetic and natural rocks, Yagi’s volume. Allied publishers, 1997, 48–67

    Google Scholar 

  11. Sharygin V.V., Stoppa F., Kolesov B.A., Cuspidine in melilitolites of San Venanzo, Italy. Transactions (Doklady) of the Russian Academy of Sciences/Earth Science Sections, 1996, 349(5), 747–751. Translated from Doklady Akademii Nauk, 1996, 348(6), 800–804

    Google Scholar 

  12. Sharygin V.V., Stoppa F., Kolesov B.A., Zr-Ti disilicates from Pian di Celle volcano, Umbria, Italy. Eur. J. Mineral., 1996, 8, 1199–1212

    Article  Google Scholar 

  13. Panina L.I., Nikolaeva A.T., Stoppa F., Genesis of melilitolite from Colle Fabbri: Inferences from melt inclusion. Miner. Petrol., 2013, doi:10.1007/s00710-0113-0268-4

    Google Scholar 

  14. Stoppa F., The San Venanzo maar and tuff-ring, Umbria, Italy: eruptive behaviour of a carbonatitemelilitite volcano. B. Volcanol., 1996, 57, 563–567

    Google Scholar 

  15. Cundari A., Ferguson A.J., Appraisal of the new occurrence of götzenitess, khibinskite and apophyllite in kalsilite-bearing lavas from San Venanzo and Cupaello (Umbria), Italy. Lithos, 1994, 31(3–4), 155–161

    Article  Google Scholar 

  16. Stoppa F., Sharygin V.V., Cundari A., New mineral data from the kamafugite-carbonatite association: the melilitolite from Pian di Celle, Italy. Mineral. Petrol., 1997, 61, 27–45

    Article  Google Scholar 

  17. Bellezza M., Merlino S. Perchiazzi N., Chemical and structural study of the Zr,Ti-disilicates in the venanzite from Pian di Celle, Umbria, Italy. Eur. J. Mineral., 2004, 16(6), 957–969

    Article  Google Scholar 

  18. Sharygin V.V., Magnesian kirschsteinite in melilitolites of the Pian di Celle volcano, Umbria, Italy. In: International conference “Ore potential of alkaline, kimberlite and carbonatite magmatism”, http://alkaline.web.ru/2012/abstracts.htm, 9 September 2011, Moscow, Russia

  19. Rosatelli G., Wall F., Stoppa F., Brilli M., Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses. Contrib. Mineral. Petrol., 2010, 160, 645–661

    Article  Google Scholar 

  20. Stoppa F., Rosatelli G., Ultramafic intrusion triggers hydrothermal explosions at Colle Fabbri (Spoleto, Umbria), Italy. J. Volcan. Geoth. Res., 2009, 187, 85–92, doi:10.1016/j.jvolgeores.2009.08.013

    Article  Google Scholar 

  21. Le Maitre R.W. (Ed.), Igneous Rocks: A classification and glossary of terms. 2nd Edition, Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, United Kingdom, 2002

    Google Scholar 

  22. Stoppa F., Sharygin V.V., Melilitolite intrusion and pelite digestion by high temperature kamafugitic magma at Colle Fabbri, Spoleto, Italy. Lithos, 2009, 112, 306–320, doi:10.1016/j.lithos.2009.03.001

    Google Scholar 

  23. Panina L.I., Stoppa F., Usol’tseva L.M., Genesis of melilitite rocks of Pian di Celle volcano, umbrian kamafugite province, Italy: evidence from melt inclusions in minerals. Petrology, 2003, 11(4), 365–382. Translated from Petrologiya, 2003, 11(4), 405–424

    Google Scholar 

  24. Cundari A., Ferguson A.J., Petrogenetic relationships between melilitite and lamproite in the Roman Comagmatic Region: the lavas of S. Venanzo and Cupaello. Contrib. Mineral. Petr., 1991, 107(3), 343–357

    Article  Google Scholar 

  25. Khomyakov A.P., Voronkov A.A., Lebedeva S.I., Bykov V.P., Yurkina K.V., Khibinskite, K2ZrSi2O7, a new mineral. Int. Geol. Rev., 1974, 6(11), 1220–1226

    Article  Google Scholar 

  26. Stoppa F., Lupini L., Mineralogy and petrology of the Polino Monticellite Calciocarbonatite (Central Italy). Mineral. Petrol., 1993, 49, 213–231

    Article  Google Scholar 

  27. Sahama Th.G, Hytönen K., Götzenite and combeite, two new minerals from the Belgian Congo. Mineral. Mag., 1957, 31, 503–510

    Article  Google Scholar 

  28. Kapustin Yu.L., Götzenite and wöhlerite from alkaline massifs of Sangilen (Tuva). Zap. Vses. Mineral. Obshch., 1980, 87, 590–597

    Google Scholar 

  29. Sharygin V.V., Pekov I.V., Zubkova N.V., Khomyakov A.P., Stoppa F., Pushcharovsky D.Y., Umbrianite, K7Na2Ca2[Al3Si10O29]F2Cl2, a new mineral species from melilitolite of the Pian di Celle volcano, Umbria, Italy. Eur. J. Mineral., 2013, 25, 655–669, doi: 10.1127/0935-1221/2013/0025-2306

    Article  Google Scholar 

  30. Gottardi G., Galli E., Natural Zeolites, Springer-Verlag, Berlin, 1985

    Book  Google Scholar 

  31. Postl W., Walter F., Tetranatrolith aus dem Basaltbruch Stürgkh-Hrusak in Klöch, Steiermark. In: Niedermayr, G., Postl, W., Walter, F. (Eds.), Neue Mineralfunde aus Österreich XXXIV. Carinthia II, 1985, 175, 250

    Google Scholar 

  32. Baumgärtl U., Cruse B., Die Mineralien der Vulkaneifel, Aufschluss, 2007, 58, 257–400

    Google Scholar 

  33. Hentschel G., Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel, Lapis, 1993, 18, 11–23

    Google Scholar 

  34. Blass G., Graf H.W., Neufunde von bekannten Fundorten (VIII), Mineralien-Welt, 1993, 5, 41–48

    Google Scholar 

  35. Passaglia E., Pongiluppi D., Rinaldi R., Merlinoite, a new mineral of the zeolite group. Neues Jahrb. Mineal., Monatsh., 1977, 355–364

    Google Scholar 

  36. Barker D.S., Nixon P.H., High-Ca, low alkali carbonatite volcanism at Fort Portal, Uganda, Contrib. Mineral. Petr., 1989, 130, 166–177

    Article  Google Scholar 

  37. Parry J., Wright F.E., Afwillite, a new hydrous calcium silicate, from Dutoitspan Mine, Kimberley, South Africa. Mineral. Mag., 1925, 20, 277–285

    Article  Google Scholar 

  38. Zhou Q., Lachowski E.E., Glasser F.P., Metaettringite, a decomposition product of ettringite. Cement Concrete Res., 2004, 34, 703–710

    Article  Google Scholar 

  39. Stoppa F., Jones A.P., Sharygin V.V., Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts. Cent. Eur. J. Geosci, 2009, 1(2), 131–151

    Article  Google Scholar 

  40. Galli E., Passaglia E., Vertumnite: Its crystal structure and relationship with natural and synthetic phases. Tschermacks Min. Petr. Mitt., 1978, 25, 33–46

    Article  Google Scholar 

  41. Chakhmouradian A.R., Williams C.T., Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. In: Wall F, Zaitsev A (Eds.), Phoscorites and Carbonatites from Mantle to Mine: the key example of the Kola Alkaline Province. The Mineralogical Society of Great Britain and Ireland, London, 2004, 293–340

    Google Scholar 

  42. Capitanio F., Comment on Melluso et al. (2003). The Ricetto and Colle Fabbri wollastonite and melilite-bearing rocks of the central Apennines, Italy. Am. Mineral., 2005, 90, 1934–1939

    Article  Google Scholar 

  43. Stoppa F., Rosatelli G., Cundari A., Castorina F., Woolley A.R., Comments on Melluso et al. (2003). Reported data and interpretation of some wollastoniteand melilite-bearing rocks from the Central Apennines of Italy. Am. Mineral., 2005, 90, 1919–1925

    Article  Google Scholar 

  44. Chipera S.J., Apps J.A., Geochemical stability of natural zeolites. In: Bish D.L. Ming D.W. (Eds.), Natural Zeolites: Occurrence, Properties, Applications. Rev. Mineral. Geochem., 1992, 45:117–161

    Google Scholar 

  45. Tschernich R.W., Zeolites of the world. Geoscience Press, Inc. Phoenix, Arizona, ISBN 0-945005-07-5, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stoppa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoppa, F., Schiazza, M. Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals. cent.eur.j.geo. 6, 549–564 (2014). https://doi.org/10.2478/s13533-012-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0190-z

Keywords

Navigation