Skip to main content
Log in

Petrogenetic relationships between melilitite and lamproite

In the Roman Comagmatic Region: the lavas of S. Venanzo and Cupaello

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A detailed petrological study of the S. Venanzo olivine melilitite and Cupaello kalsilitite, located at the NE margin of the Roman Comagmatic Region of Italy has provided new data to evaluate their genetic relationships and related tectonic/magmatic conditions. Early crystallized olivine (Fo92) from S. Venanzo is compatible with crystallization from near primary mantle melts, while late-crystallized olivine from both rocks (Fo88–79) reflects primarily the high Ca of the host liquids, attained under the volcanic crystallization regime. Magnesiochromite inclusions in the early-crystallized olivine are consistent with near-primary melts close to lamproite in composition. Nepheline and kalsilite from both lavas contain high alkalis (+Ca), relative to Al, and thus correspond more closely with nepheline compositions from carbonatite-related assemblages, than with those from a wide compositional range of Alban Hills lavas. Coexisting melilite has high (Na+K)/Al, reflecting the Peralkalinity Index of the bulk rocks. Diopside and phlogopite from both lavas are characteristic of lamproites and groundmass kimberlites in their high Mg/(Mg+Fe2+) ratio (0.86–0.95; 0.80–0.90, respectively) and T-site (Si+Al) deficiencies. Götzenite, Ca2Na[Zr, Ti]Si2O7(O, OH, F)2, identified in both lavas, is typical of nephelinite-ijolite assemblages. On the other hand, khibinskite, K4Zr2Si4O14, found in the Cupaello lava, may be regarded as a Si-poor variety of wadeite, a mineral characteristic of lamproites. Clinopyroxene and monticellite, coexisting as late-crystallized phases in both lavas, suggest a common P-T liquid path of thermal descent in the system CaMgSi2O7−CO2 in the presence of excess CO2, but with different intersections with the åkermanite stability field. Substantial differences in SiO2 saturation combined with high Mg number and liquidus temperatures experimentally determined at atmospheric pressure in both lavas (1276° C and 1260° C, respectively) indicate that a parent-daughter relationship is unlikely under the volcanic P-T regime. In La Roche's “Rm-Ri-Rs” diagram, the S. Venanzo composition fall close to the Oldoinyo Lengai alkalic pyroxenite trend of Donaldson and Dawson, while the Cupaello compositions follow a lamproitic trend, consistent with that indicated by the quartz-normative glass of the Gaussberg lava. Mantle compositions corresponding to wehrlite-clinopyroxenite and enriched in H2O, CO2, F, and LILE, are favoured as potential sources for the lavas. Their origin is probably related to subcrustal fluid transfer promoted by the Tyrrhenian mantle doming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey DK (1987) Mantle metasomatism-perspective and prospect. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc London Sp Pub 30:1–13

  • Barton M (1979) A comparative study of some minerals occurring in the potassium-rich alkaline rocks of the Leucite Hills, Wyoming, the Vico volcano, western Italy, and the Toro-Ankole region, Uganda. Neues Jahrb Mineral Abh 137:113–134

    Google Scholar 

  • Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton JG, Upton BJG (eds) Alkaline igneous rocks. Geol Soc London Sp Pub 30:103–190

  • Biggar GM (1974) Oxygen partial pressures; control, variation, and measurement in quench furnaces at one atmosphere total pressure. Mineral Mag 39:580–586

    Google Scholar 

  • Biggar GM, O'Hara MJ (1969) Temperature and calibration in quench furnaces and some temperature measurements in the system CaO−MgO−Al2O3−SiO2. Mineral Mag 37:1–15

    Google Scholar 

  • Boctor NZ, Yoder HS Jr (1986) Petrology of some melilite-bearing rocks from Cape Province, Republic of South Africa: relationship to kimberlite. Am J Sci 286:513–539

    Google Scholar 

  • Carmichael ISE (1967) The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib Mineral Petrol 15:24–66

    Google Scholar 

  • Cundari A (1973) Petrology of the leucite-bearing lavas in New South Wales (Australia). J Geol Soc Aust 20:465–492

    Google Scholar 

  • Cundari A (1979) Petrogenesis of leucite-bearing lavas in the Roman Volcanic Region, Italy. The Sabatini lavas. Contrib Mineral Petrol 70:9–21

    Google Scholar 

  • Cundari A (1982) Petrology of pyroxenite ejecta from Somma-Vesuvius and their genetic implications. Tschermaks Miner Petr Mitt 30;17–35

    Google Scholar 

  • Cundari A, Ferguson AK (1982) Significance of the pyroxene chemistry from leucite-bearing and related assemblages. Tschermaks Mineral Petrogr Mitt 30:189–204

    Google Scholar 

  • Cundari A, Salviulo G (1987) Clinopyroxenes from Somma-Vesuvius: implications of crystal chemistry and site configuration parameters for studies of magma genesis. J Petrol 28:727–736

    Google Scholar 

  • Cundari A, Salviulo G (1989) Ti solubility in diopsidic pyroxene from a suite of New South Wales leucitites (Australia). Lithos 22:191–198

    Google Scholar 

  • Dawson JB, Smith JV (1988) Metasomatized and veined upper-mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the Tanzanian sector of the East African Rift Valley. Contrib Mineral Petrol 100:510–527

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1986) Disilicates and ring silicates. Longman, UK

    Google Scholar 

  • Donaldson CH, Dawson JB (1978) Skeletal crystallization and residual glass compositions in a cellular alkalic pyroxenite nodule from Oldoinyo Lengai. Contrib Mineral Petrol 67:139–149

    Google Scholar 

  • Edgar AD (1987) The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc London Sp Pub 30:29–52

  • Ferguson AK (1978) Ca-enrichment in olivines from volcanic rocks. Lithos 11:189–194

    Google Scholar 

  • Ferguson AK, Sewell DKB (1980) A peak integration method for acquiring X-ray data for on-line microprobe analysis. X-Ray Spectrom 9:48–51

    Google Scholar 

  • Ferrara G, Laurenzi MA, Taylor HP Jr, Tonarini S, Turi B (1985). Oxygen and Strontium Isotope Studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28

    Google Scholar 

  • Ferrara G, Preite-Martinez M, Taylor HP Jr, Tonarini S, Turi B (1986) Evidence of crustal assimilation, mixing of magmas, and a 87Sr-rich upper mantle. Contrib Mineral Petrol 92:269–280

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Mineral Petrol 94:183–192

    Google Scholar 

  • Fornaseri M, Turi B (1969) Carbon and Oxygen isotopic composition of carbonates in lavas and ejectites from the Alban Hills, Italy. Contrib Mineral Petrol 23:244–256

    Google Scholar 

  • Fornaseri M, Scherillo A, Ventriglia U (1963) La Regione Vulcanica dei Colli Albani Consiglio Nazionale Ricerche, Roma

  • Gallo F, Giammetti F, Venturelli G, Vernia L (1984) The kamafugitic rocks of S. Venanzo and Cupaello, Central Italy. Neues Jahrb Mineral Monatsh 5:198–210

    Google Scholar 

  • Gragnani R (1972) Le vulcaniti melilititiche di Cupaello (Rieti). Rend Soc Ital Mineral Petrol 28:165–189

    Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Google Scholar 

  • Haukka M, Thomas IL (1977) Total X-ray fluorescence analysis of geological samples using a low-dilution lithium metaborate fusion method. Matrix correction for major elements. X-Ray Spectrom 6:204–211

    Google Scholar 

  • Holm PM, Munksgaard NC (1982) Evidence for mantle metasomatism: an Oxygen and Strontium isotope study of the Vulsinian District, Central Italy. Earth Planet Sci Lett 60:376–388

    Google Scholar 

  • Holm PM, Lou S, Nielsen Å (1982) The geochemistry and petrogenesis of the lavas of the Vulsinian District, Roman Province, Central Italy. Contrib Mineral Petrol 80:367–378

    Google Scholar 

  • Holmes A (1942) A heteromorph of Venanzite. Geol Mag 79:225–232

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB, Gregory GP, Ferguson J, McCulloch MT (1984) The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites and related rocks. Elsevier, Amsterdam, pp 225–254

    Google Scholar 

  • Kelsey CH (1965) Calculation of the CIPW norm. Mineral Mag 34:276–282

    Google Scholar 

  • La Roche H (1986) Classification et nomenclature des roches ignées: un essai de restauration de la convergence entre systématique quantitative, typologie d'usage et modélisation génétique. Bull Soc Geol Fr: 8 II n.2:337–353

    Google Scholar 

  • Le Maitre RW (1981) GENMIX-A generalized petrological mixing model program. Comp Geosci 7:229–247

    Google Scholar 

  • Lloyd FE, Arima M, Edgar AD (1985) Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib Mineral Petrol 91:321–329

    Google Scholar 

  • Locardi E (1986) Tyrrhenian volcanic arcs: Volcano-tectonics, petrogenesis and economic aspects. In: FC Wezel (ed) The origin of arcs. Elsevier, Amsterdam 351–373

    Google Scholar 

  • Luth WC (1967) Studies in the system KAlSiO4−Mg2SiO4−SiO2−H2O: I. Inferred phase relations and petrologic applications. J Petrol 8:372–416

    Google Scholar 

  • Mason PK, Frost MT, Reid SJB (1969) Computer programs for calculating correlations in quantitative X-ray microanalysis. Nat Phys Lab (U.K.), IMS Rep 2

  • Meen JK (1987) Mantle metasomatism and carbonatites; An experimental study of a complex relationship. Geol Soc Am Spec Pap 215:91–100

    Google Scholar 

  • Mitchell RH (1985) A review of the mineralogy of lamproites. Trans Geol Soc S Afr 88:411–437

    Google Scholar 

  • Mitchell RH (1986) Kimberlites. Plenum Press, New York London

    Google Scholar 

  • Mittempergher M (1965a) Vulcanismo e petrogenesi nella zona di S. Venanzo (Umbria). Atti Soc Toscana Sci Nat Pisa, Mem 72:437–479

    Google Scholar 

  • Mittempergher M (1965b) Volcanism and petrogenesis in the S. Venanzo area (Italy). Bull Volcanol 28:85–94

    Google Scholar 

  • Moore AE (1983) A note on the occurrence of melilite in kimberlites and olivine melilitites. Mineral Mag 47:404–406

    Google Scholar 

  • Moore AE, Erlank AJ (1979) Unusual olivine zoning-evidence for complex physico-chemical changes during the evolution of olivine melilitite and kimberlite magma. Contrib Mineral Petrol 70:391–405

    Google Scholar 

  • Morbidelli L (1964) Contributo alla conoscenza della venanzite: la facies differenziata di Podere Pantano e la phillipsite che l'accompagna. Period Mineral 33:199–221

    Google Scholar 

  • Onuma K, Yagi K (1967) The system diopside-åkermanite-nepheline. Am Mineral 52:227–243

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, Central Italy and implications for mantle enrichment processes beneath the Roman Region. Contrib Mineral Petrol 90:244–257

    Google Scholar 

  • Rosenberg PE, Foit FF (1977) Fe2+−F avoidance in silicates. Geochim Cosmochim Acta 41:345–346

    Google Scholar 

  • Sahama ThG, Hytonen K (1957) Götzenite and combeite, two new silicates from the Belgian Congo. Mineral Mag 31:503–510

    Google Scholar 

  • Sheraton JW, Cundari A (1980) Leucitites from Gaussberg, Antarctica. Contrib Mineral Petrol 71:417–427

    Google Scholar 

  • Sheppard SMF, Dawson JB (1973) 13C/12C and D/H isotope variations in “Primary Igneous Carbonatites”. Fortschr Mineral 50:128–129

    Google Scholar 

  • Smith JV, Brennesholtz R, Dawson JB (1978) Chemistry of micas from kimberlites and xenoliths, I. Micaceous kimberlites. Geochim Cosmochim Acta 42:959–971

    Google Scholar 

  • Streckeisen A (1978) IUGS Subcommision on the systematics of Igneous Rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilite rocks. Neues Jahrb Mineral Abh 143:1–14

    Google Scholar 

  • Stoppa F (1988) L'euremite di Colle Fabbri (Spoleto): un litotipo ad affinità cabonatitica in Italia. Boll Soc Geol Ital 107:239–248

    Google Scholar 

  • Taylor HP Jr (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1–71

    Google Scholar 

  • Taylor HP Jr, Turi B, Cundari A (1984) 18O/16O and chemical relationships in K-rich volcanic rocks from Australia, East Africa, Antarctica, and San Venanzo-Cupaello, Italy. Earth Planet Sci Lett 69:263–276

    Google Scholar 

  • Thomas IL, Haukka M (1978) X-ray determination of trace and major elements using a single-fused disc. Chem Geol 21:39–50

    Google Scholar 

  • Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks. I. Differentiation Index. Am J Sci 258:664–684

    Google Scholar 

  • Tilley CE, Yoder HS Jr (1968) The pyroxenite facies conversion of volcanic and subvolcanic, melilite-bearing and other alkali ultramafic assemblages. Carnegie Inst Washington Yb 66:457–460

    Google Scholar 

  • Turi B (1968) Terre rare e niobio in una perovskite dei Colli Albani. Accad Naz Lincei Rend Cl Sci fis mat e nat Sr VIII Vol XLIV:801–811

    Google Scholar 

  • Turi B (1969) La composizione isotopica dell'Ossigeno e del Carbonio dei carbonati presenti nelle vulcaniti di S. Venanzo (Umbria). Period Mineral 28:589–603

    Google Scholar 

  • Velde D, Yoder HS Jr (1976) The chemical composition of melilite-bearing eruptive rocks. Carnegie Inst Washington Yearb 75:574–580

    Google Scholar 

  • Velde D, Yoder HS Jr (1977) Melilite and melilite-bearing igneous rocks. Carnegie Inst Washington Yearb 76:478–484

    Google Scholar 

  • Velde D, Yoder HS Jr (1978) Nepheline solid solutions in melilite-bearing eruptive rocks and olivine nephelinites. Carnegie Inst Washington Yearb 77:761–767

    Google Scholar 

  • Vollmer R (1976) Rb-Sr and U-Th-Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geochim Cosmochim Acta 40:283–295

    Google Scholar 

  • Vollmer R (1989) On the origin of the Italian potassic magmas. 1. A discussion contribution. Chem Geol 74:220–239

    Google Scholar 

  • Washington HS (1906) The Roman Comagmatic Region. Carnegie Inst Washington Publ No 57

  • Wendlandt RF, Eggler DH (1980) The origin of potassic magmas; 1. Melting relations in the systems KAlSiO4−Mg2SiO4−SiO2 and KAlSiO4−MgO−SiO2−CO2 to 30 Kilobars. Am J Sci 280:385–420

    Google Scholar 

  • Wones DR (1979) The fractional resorption of complex minerals and the formation of strongly femic alkaline rocks. In: Yoder HS Jr (ed) The evolution of igneous rocks. Princeton University Press, Princeton, NJ, pp 413–422

    Google Scholar 

  • Yagi K (1963) Liquidus data on the system acmite-diopside-nepheline-diopside at 1 atmosphere. Carnegie Inst Washington Yearb 62:133–134

    Google Scholar 

  • Yoder HS Jr (1975) Relationship of melilite-bearing rocks to kimberlite: A preliminary report on the system Åkermanite-CO2. Phys Chem Earth 9:883–894

    Google Scholar 

  • Yoder HS Jr, Tilley CE (1962) Origin of basaltic magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

  • Yoder HS Jr, Velde D (1976) Melilite and melilite-bearing igneous rocks. Carnegie Inst Washington Yearb 76:478–485

    Google Scholar 

  • Zambonini F, Prior GT (1909) On the identity of götzenite and hiortdahlite. Mineral Mag 15:247–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cundari, A., Ferguson, A.K. Petrogenetic relationships between melilitite and lamproite. Contr Mineral Petrol 107, 343–357 (1991). https://doi.org/10.1007/BF00325103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325103

Keywords

Navigation