Skip to main content
Log in

Vertumnite: Its crystal structure and relationship with natural and synthetic phases

Vertumnit: Seine Kristallstruktur und seine Beziehungen zu anderen natürlichen und künstlichen Phasen

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

Vertumnite, Ca4Al4Si4O6(OH)24·3H2O, is metrically monoclinic, strongly pseudohexagonal;a=5.744 (5),b=5.766(5),c=25.12(1) Å, γ=119.72(5)°; space groupP2 1 /m. The crystal structure was determined from X-ray intensities and refined in both the monoclinic and the hexagonal space group [P6 3/m; a=(a mon +b mon )/2]. The monoclinic refinement did not lead to significant deviations from hexagonal symmetry. The atomic arrangement consists of modified brucite-layers Ca VII2 AlVI(OH, H2O)8, atz=0 andz=1/2, alternating with tetrahedral double layers and connected only by hydrogen bridges. TheT sites are statistically and only partly occupied by Si and Al. The distances from theT sites to the three basal (O, OH) measure 1.80 Å; this large distance is probably caused by local deformations in connection with the disorder in theT sites. Water molecules occupy statistically the double rings. A comparison with the previously reported powder patterns of “gehlenite hydrate” and strätlingite is given.

Zusammenfassung

Vertumnit, Ca4Al4Si4O6(OH)24·3 H2O, ist metrisch monoklin, ausgeprägt pseudohexagonal;a 0=5,744(5),b 0=5,766(5),c 0=25,12(1) Å, γ=119,72(5)°; RaumgruppeP2 1/m. Die Kristallstruktur wurde aus Röntgenintensitäten bestimmt und sowohl in der monoklinen wie in der hexagonalen Raumgruppe [P6 3/m; a 0=(a 0,mon +b 0,mon )/2] verfeinert. Die monokline Verfeinerung führte auf keine wesentlichen Abweichungen von hexagonaler Symmetrie. Die Atomanordnung besteht aus modifizierten Brucit-Schichten, Ca VII2 AlVI(Oh, H2O)8, die mit Doppeltetraederschichten abwechseln und mit diesen nur über Wasserstoffbrücken verbunden sind. DieT-Positionen sind durch Si und Al statistisch und nur partiell besetzt. Die Abstände von denT-Positionen zu den drei basalen (O, OH) messen 1,80 Å; dieser große Abstand wird wahrscheinlich durch lokale Verzerrungen im Zusammenhang mit der Unordnung in denT-Lagen verursacht. Wassermoleküle füllen statistisch die Doppelringe. Das Pulverdiagramm wird mit den publizierten Diagrammen von “Gehlenit-Hydrat” und Strätlingit verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, S. C., 1969: Indicators of accuracy in structure factor measurement. Acta Cryst.A25, 165–173.

    Google Scholar 

  • Ahmed, S. J., andH. F. W. Taylor, 1967: Crystal structures of the lamellar calcium aluminate hydrates. Nature215, 622–623.

    Google Scholar 

  • Allmann, R., 1968: Die Doppelschichtstruktur der plättchenförmigen Calcium-Aluminium-Hydroxisalze am Beispiel des 3 CaO·Al2O3·CaSO4·12H2O. N. Jb. Min. Mh., Jg.1968, 140–144.

    Google Scholar 

  • Busing, W. R., K. O. Martin, andH. A. Lévy, 1962: ORFLS. A Fortran crystallographic least-squares refinement program. U. S. Nat. Tech. Inform. Serv. ORNL-TM-305.

  • Davies, J. E., andB. M. Gatehouse, 1973: The crystal and molecular structure of unsolvated μ-Oxo-bis-[N,N′-ethylenebis(salicylaldiminato)iron(III)]. Acta Cryst.B29, 1934–1942.

    Google Scholar 

  • Drits, V. A., A. A. Kashaev, andG. V. Sokolova, 1975: Crystal structure of cymrite. (In Russian). Kristallografiya20, 280–286. [Translation in Sov. Phys. Cryst.20, 171–175].

    Google Scholar 

  • Hamilton, W. C., 1959: On the isotropic temperature factor equivalent to a given anisotropic temperature factor. Acta Cryst.12, 609–610.

    Google Scholar 

  • Hanson, H. P., F. Herman, J. D. Lea, andS. Skilmann, 1964: HFS atomic scattering factors. Acta Cryst.17, 1040–1044.

    Google Scholar 

  • Hentschel, G., andH.-J. Kuzel, 1976: Strätlingit, 2 CaO·Al2O3·SiO2·8 H2O, ein neues Mineral. N. Jb. Min. Mh., Jg.1976, 326–330.

    Google Scholar 

  • Kuzel, H.-J., 1976: Crystallographic data and thermal decomposition of synthetic gehlenite hydrate 2 CaO·Al2O3·SiO2·8 H2O. N. Jb. Min. Mh. Jg.1976, 319–325.

    Google Scholar 

  • Louisnathan, S. J., andG. V. Gibbs, 1972: Aluminum-silicon distribution in zunyite. Amer. Min.57, 1089–1108.

    Google Scholar 

  • Main, P., M. M. Woolfson, andG. Germain, 1971: MULTAN, a computer program for the automatic solution of crystal structures. University of York.

  • Miyashiro, A., 1956: Osumilite, a new silicate mineral, and its crystal structure. Amer. Min.41, 104–116.

    Google Scholar 

  • Moore, P. B., 1970: Edge-sharing silicate tetrahedra in the crystal structure of leucophoenicite. Amer. Min.,55, 1146–1166.

    Google Scholar 

  • Passaglia, E., andE. Galli, 1977: Vertumnite, a new natural silicate. Tschermaks Min. Petr. Mitt.24, 57–66.

    Google Scholar 

  • Schmitt, C. H., 1960: Discussion of “Hydratation of calcium aluminates and ferrites” by F. E. Jones. Proc. Fourth Int. Symp. on the Chem. of Cement, Washington I, 244.

    Google Scholar 

  • Schulz, H., andP. J. Huber, 1971: Dispersion analysis of single-crystal diffractometer measurements. I. Methods of investigation. Acta Cryst.A27, 536–539.

    Google Scholar 

  • Takéuchi, Y., 1958: A detailed investigation of the structure of hexagonal BaAl2Si2O8 with reference to its α-β inversion. Min. J.2, 311–332.

    Google Scholar 

  • Takéuchi, A., andG. Donnay, 1959: The crystal structure of hexagonal CaAl2Si2O8. Acta Cryst.12, 465–470.

    Google Scholar 

  • Taylor, H. F. W., 1974: Crystal chemistry of portland cement hydration products. Sixth Internat. Symposium on the chemistry of Cement, Moscow, Principal Paper.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, E., Passaglia, E. Vertumnite: Its crystal structure and relationship with natural and synthetic phases. TMPM Tschermaks Petr. Mitt. 25, 33–46 (1978). https://doi.org/10.1007/BF01082202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082202

Keywords

Navigation